
Eur. Phys. J. C (2016) 76:571
DOI 10.1140/epjc/s10052-016-4410-4

Regular Article - Theoretical Physics

New perspective for black hole thermodynamics
in Gauss–Bonnet–Born–Infeld massive gravity

Seyed Hossein Hendi 1,2,a, Gu-Qiang Li3,b, Jie-Xiong Mo3,c, Shahram Panahiyan1,4,d, Behzad Eslam Panah1,e

1 Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454, Iran
2 Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P. O. Box 55134-441, Maragha, Iran
3 Institute of Theoretical Physics, Lingnan Normal University, Zhanjiang 524048, Guangdong, China
4 Physics Department, Shahid Beheshti University, Tehran 19839, Iran

Received: 17 July 2016 / Accepted: 30 September 2016 / Published online: 22 October 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Following an earlier study regarding Einstein–
Gauss–Bonnet-massive black holes in the presence of a
Born–Infeld nonlinear electromagnetic field (Hendi,
arXiv:1510.00108, 2016), we study thermodynamical struc-
ture and critical behavior of these black holes through var-
ious methods in this paper. Geometrical thermodynamics is
employed to give a picture regarding the phase transition of
these black holes. Next, a new method is used to derive crit-
ical pressure and radius of the horizon of these black holes.
In addition, Maxwell equal area law is employed to study the
Van der Waals like behavior of these black holes. Moreover,
the critical exponents are calculated and by using Ehrenfest
equations, the type of phase transition is determined.

1 Introduction

Black hole solution is one of the interesting consequences of
general relativity. Although the existence of black holes is
vivid, it is an open question to realize interior nature of them
in quantitative detail; the main reason comes from the fact
that a perfect theory of quantum gravity does not yet exist.
Studying the semiclassical phase structure of black holes pro-
vides at least preliminary steps for understanding the quan-
tum gravity.

The phase transition plays an important role for explor-
ing the critical behavior of the system near critical point.
After the discovery of a phase transition by Hawking and
Page [2], black hole phase transitions have been of great
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interest. It is well known that the asymptotically flat vac-
uum black hole solutions are thermally unstable [3]. While
asymptotically AdS black holes are the famous examples of
the Hawking–Page phase transition [2] between two stable
phases. In order to characterize the critical behavior of a sys-
tem during the phase transition, one may calculate its criti-
cal exponents which are not completely independent. Mean-
while two systems belong to the same universality class if
their critical behavior is expressed by the same critical expo-
nents.

The semiclassical phase transition which occurs in the
asymptotically AdS space-times can be translated to a con-
finement/deconfinement phase transition in the context of
AdS/CFT [4]. Regarding the applications of AdS/CFT corre-
spondence in recent years, the similarities between the phase
transition of black holes and holographic superconductivity,
have achieved a great deal of attention [5,6].

The local (thermal) stability of a system is concerned with
how the system responds to small fluctuations of its thermo-
dynamic coordinates. There are various methods that one
can employ to investigate the phase structure of a black hole
system near its critical point. One of the well-known stan-
dard analyses of the locally stability is based on the canonical
ensemble by studying the specific heats. Phase structure may
also be explained by critical quantities that are extracted in
the extended phase space. In addition, one may apply the
geometrical thermodynamics method for studying the phase
transition.

One of the methods for constructing the phase structure
of a thermodynamical system is through the use of geom-
etry. Meaning, by considering a thermodynamical potential
and its corresponding extensive parameters, it is possible to
introduce a metric which describes thermodynamical proper-
ties of the system. The information regarding thermodynam-
ical properties of the system is extracted from Ricci scalar
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of the metric. The divergencies of the Ricci scalar of the
thermodynamical metric mark two important points of the
thermodynamical system; the bound point and the phase tran-
sition. There are several methods regarding thermodynami-
cal geometry which are; Weinhold [7,8], Ruppeiner [9,10],
Quevedo [11,12] and HPEM [13–15]. The geometrical ther-
modynamics has been employed in the context of different
types of black holes [16–22]. In addition, this method was
also used to study the phase transition of superconductors
[23]. A comparative study regarding different geometrical
thermodynamical metrics is done in Ref. [24]. A success-
ful method of the geometrical thermodynamics include all
bound and phase transition points in its Ricci scalar through
the divergencies. In other words, divergencies of the Ricci
scalar and mentioned points must coincide with each other.
A mismatch and extra divergency indicate the existence of
anomaly which contradict with principles of thermodynam-
ics. Such anomaly was reported for Weinhold, Ruppeiner
and Quevedo metrics for different types of black holes [13–
15,25]. To overcome such problem, HPEM metric was intro-
duced [13]. In this paper, we will regard HPEM method for
studying geometrical thermodynamics of black holes under
consideration.

Einstein gravity introduces gravitons as massless parti-
cles, whereas there are several arguments that state gravitons
should be massive particles. In order to have massive gravi-
ton, theory of general relativity should be modified to include
mass terms. The first attempt for constructing a massive the-
ory was referred to the works of Fierz and Pauli [26] which
was done in the context of linear theory. This theory has
specific problem which is known as van Dam, Veltman and
Zakharov discontinuity. Meaning that propagator of the mas-
sive gravity in limit m = 0 is not consistent with one derived
for massless case. The resolution to this problem was Vain-
shtein mechanism which requires the system to be considered
in nonlinear regime. In other words, according to the Vain-
shtein mechanism [27], at some distance below the so-called
Vainshtein radius, the linear regime breaks down and the the-
ory enters into a nonlinear framework. Based on this mecha-
nism, the usual general relativity can be recovered from high
curvature space-times which are introduced with a wide class
of non-Einsteinian theories. In the context of a static and
spherically symmetric base space, it is also shown that the
Vainshtein mechanism can work, correctly, both inside and
outside the compact objects [28,29] (See Refs. [30–34] for
more details regarding Vainshtein mechanism). On the other
hand, generalization of the Fierz and Pauli massive theory
to nonlinear one leads to the existence of a Boulware–Deser
ghost [35]. While solutions to these problems had existed for
some time in three dimensional spacetime [36,37], they were
not solved in four and higher dimensions. In order to solve
such problems de Rham, Gabadadze and Tolley (dRGT) pro-
posed another class of massive gravity [38,39]. Contrary to

previous theories, dRGT theory is valid in higher dimensions
and it was shown that such theory enjoys absence of the
Boulware–Deser ghost [40,41]. This theory builds up mas-
sive terms by employing a reference metric. A modification
in reference metric could lead to another dRGT like massive
theory [42]. Black hole solutions of dRGT massive gravity
and their thermodynamical properties have been investigated
for d dimensions (d ≥ 3) in Refs. [25,43–48].

On the other hand, one of the well-known theories of
higher derivative gravity is Lovelock theory which is a nat-
ural generalization of Einstein gravity in higher dimensions.
Taking into account the first additional term of Einstein grav-
ity in the context of Lovelock theory (Gauss–Bonnet (GB)
gravity), it is believed that GB gravity can solve some of the
shortcomings of Einstein gravity [49–51]. In addition, GB
gravity consists of curvature-squared terms which, interest-
ingly, is free of ghosts and the corresponding field equations
contain no more than second derivatives of the metric (see
Refs. [52–57] for more details). Another interesting aspect of
GB gravity is that it can be arisen from the low-energy limit of
heterotic string theory [58–61]. Considering the GB gravity
context, black hole solutions and their interesting behavior
have been investigated in much literature [62–70].

On the other hand, one of the main problems of Maxwell’s
electromagnetic field theory for a point-like charge is that
there is a singularity at the charge position; therefore, it has
infinite self energy. In order to remove this self energy, in clas-
sical electrodynamics, Born and Infeld introduced a nonlin-
ear electromagnetic field [71], with mainly the motivation of
solving the infinite self energy problem by imposing a maxi-
mum strength of the electromagnetic field. Motivated by the
interesting results mentioned above, we study the thermody-
namic behavior of black holes in GB-massive gravity in the
presence of a Born–Infeld (BI) source.

In order to have a better description regarding physics gov-
erning a system, it is necessary to decrease different short-
comings of different theories as much as possible. This indi-
cates that we should apply more generalizations to solve the
various shortcomings of theories describing the nature of the
system. Here, we have considered three generalizations; the
BI generalization to remove shortcomings of the Maxwell
theory, GB gravity to solve different problems of Einstein
theory such as renormalization problem, and massive grav-
ity to solve the massless gravitons in both Einstein gravity
and GB theory. Such considerations solve some of the short-
comings of the theories under consideration, but they also
modify the physical properties of the system. In this paper,
we intend to investigate these modifications in the context of
the critical behavior of black holes, which in turn provides a
reasonable framework for conducting studies in other aspects
of physics such as gauge/gravity duality.

The outline of the paper will be as follows. In the next sec-
tion, we introduce the action and the basic equations related
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to GB–BI–massive gravity. We also present a brief discus-
sion regarding the black hole solutions and conserved and
thermodynamics quantities. Section 3 is devoted to a study
of the phase transition through geometrical thermodynamics.
In Sect. 4, we investigate the critical behavior of the system
via a new method, which comes from the maximum point of
denominator of the heat capacity. We also check the Maxwell
equal area law in Sect. 5. After that we calculate the critical
exponents of the system in the extended phase space in Sect.
6. In Sect. 7, we examine the Ehrenfest equations at the crit-
ical point and confirm the validity of the second order phase
transition. In the last section we present our conclusions.

2 Basic equations

In the current paper, we set out to discuss the geometric
and thermodynamic properties of charged black holes in d-
dimensional GB-massive gravity with d−4 compact dimen-
sions. Regarding compactified extra dimensions, it has been
shown that, depending on the horizon topology, one can
obtain black string/membrane solutions in addition to black
hole solutions. Furthermore, it has been pointed out that, in
the context of GB gravity, one may obtain non-trivial mod-
ified solutions with an extra asymptotic charge [72]. In this
paper, we focus on the black hole solutions with usual con-
served charges.

The d-dimensional action of GB-massive gravity with the
negative cosmological constant and in the presence of BI
electrodynamics is

I = − 1

16π

∫
dd x

√−g

[
R − 2�

+α(Rμνγ δR
μνγ δ − 4RμνR

μν + R2)

+4β2

(
1 −

√
1 + F

2β2

)
+ m2

4∑
i

ciUi (g, f )

]
, (1)

where R, �, m, α, and β are, respectively, the scalar curva-
ture, the cosmological constant, the massive parameter, the
GB factor, and the BI parameter. Also Rμν and Rμνγ δ are
the Ricci and Riemann tensors, F = FμνFμν denotes the
Maxwell invariant, and f is a fixed symmetric tensor. In Eq.
(1), the ci are constants and the Ui are symmetric polyno-
mials of the eigenvalues of d × d matrix Kμ

ν = √
gμα fαν ,

which can be written in the following form:

U1 = [K] , (2)

U2 = [K]2 −
[
K2
]
, (3)

U3 = [K]3 − 3 [K]
[
K2
]

+ 2
[
K3
]
, (4)

U4 = [K]4 − 6
[
K2
]

[K]2 + 8
[
K3
]

[K]

+3
[
K2
]2 − 6

[
K4
]
. (5)

Using the action (1) and variation of this action with
respect to the metric tensor (gμν) and the Faraday tensor
(Fμν), respectively, leads to

Gμν+�gμν+Hμν − 1

2
gμνL(F)− 2FμλFλ

ν√
1 + F

2β2

+m2χμν = 0,

(6)

∂μ

⎛
⎝

√−gFμν√
1 + F

2β2

⎞
⎠ = 0, (7)

in the above equations Gμν is the Einstein tensor, Hμν and
χμν are

Hμν = −α

2
[8Rρσ Rμρνσ − 4Rρσλ

μ Rνρσλ − 4RRμν

+8RμλR
λ
ν + gμν(Rμνγ δR

μνγ δ − 4RμνR
μν + R2)]

(8)

and

χμν = −c1

2
(U1gμν − Kμν) − c2

2
(U2gμν − 2U1Kμν + 2K2

μν)

−c3

2
(U3gμν − 3U2Kμν + 6U1K2

μν − 6K3
μν)

−c4

2
(U4gμν − 4U3Kμν + 12U2K2

μν − 24U1K3
μν

+ 24K4
μν). (9)

2.1 Black hole solutions

Consider the following metric of d-dimensional spacetime:

ds2 = − f (r)dt2 + f −1(r)dr2 + r2hi jdxidx j ,

i, j = 1, 2, 3, . . . , n, (10)

where hi jdxidx j is the line element with constant curvature
(d − 2) (d − 3)κ and volume Vd−2 and the ansatz metric in
the following form [42]:

fμν = diag(0, 0, c2hi j ), (11)

in which c is a positive constant. The metric function was
obtained in Ref. [1]:

f (r) = κ + r2

2αd3d4

×
{

1 −
√

1 + 8αd3d4

d1d2

[
� + d1d2m0

2rd1
+ A + B

]}
,

(12)

A = −2β2
(

1 −√1 + η
)

− d2
2q

2

r2d2
H,
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B = −m2d1d2

[
d3d4c4c4

2r4 + d3c3c3

2r3 + c2c2

2r2 + cc1

2d2r

]
,

where m0 and q are integration constants, which are related
to the total mass and the electric charge of black hole, respec-
tively. The notation di is introduced to denote the term d − i
(Recall that d is the spacetime dimensionality) so as to sim-
plify the expressions of physical quantities in this paper. For
example, d1 denotes the term d−1 while d2 denotes the term
d − 2. It is notable that, in the above solution, we used the
gauge potential ansatz Aμ = h(r)δ0

μ in the Maxwell equation
(7). Also, H, η, and the consistent h(r) are of the following
forms:

H = 2F1

([
1

2
,
d3

2d2

]
,

[
3d7/3

2d2

]
− η

)
, (13)

η = d2d3q2

2β2r2d2
, (14)

h(r) = −
√

d2

2d3

q

rd3
H. (15)

It was shown that the asymptotical behavior of the solu-
tions are (a)dS solutions with an effective cosmological
constant (�e f f ) [1]. This effective cosmological constant
reduces to ordinary � for vanishing α. It was also shown that
neither massive nor BI parts affect the asymptotical behavior
of the solutions. [1]

2.2 Thermodynamics

The Hawking temperature of the black hole is given by [1]

T = 1

4πN
{
m2

r+

[
d3d4(c

3c3r+ + d5c
4c4)

+r2+(cc1r+ + d3c
2c2)

]
+ 2r3+

d2
(2β2 − �)

−4β2r3+
d2ϒ+

+ κd3

r+
(r2+ + ακd4d5)

}
, (16)

where N = 2ακd3d4 + r2+ and also, ϒ+ = ϒ
∣∣r=r+ (which

ϒ =
√

1 −
(
h′(r)

β

)2
). It is notable that r+ in the above

expression denotes the largest real root of equation f (r) = 0.
The total charge, the electric potential (U ), and the entropy

of the black hole are [1]

Q = Vd2

√
d2d3

4π
q, (17)

U = Aμχμ |r→∞ − Aμχμ
∣∣r→r+ =

√
d2

2d3

q

rd3+
H+, (18)

S = Vd2

4
rd2+

(
1 + 2d2d3

r2+
κα

)
, (19)

where H+ = H ∣∣r=r+ The total mass of the black hole is of
the following form [1]:

M = d2 Vd2

16π
m0. (20)

The first law of thermodynamics for black hole solution
in the GB-BI-massive gravity was checked in Ref. [1] and it
was found that these thermodynamical quantities satisfy the
first law of black hole thermodynamics,

dM = T dS +UdQ. (21)

3 Geometrical thermodynamics

Here, we are interested in studying the critical behavior of
the black holes through the use of geometrical method. This
method builds the phase space of black holes by using one of
the thermodynamical quantities as thermodynamical poten-
tial and its corresponding extensive parameters as compo-
nents of phase space. By doing so, a metric is obtained in
which the thermodynamical properties of the system are
stored in its Ricci scalar. Divergencies of the Ricci scalar
point out two important places in thermodynamical behav-
ior of the system; whether the system goes through a second
order phase transition or it meets a bound point. A bound
point is where heat capacity/temperature meets a root. In
other words, in bound points a limit for having a physical
system (positive temperature) is given. On the other hand, in
the phase transition point, the heat capacity has a divergency,
implying that there is a discontinuity in the heat capacity.
In place of this divergency, a second order phase transition
takes place.

There are several methods for constructing the phase
space of black holes through thermodynamical quantities;
see Weinhold [7,8], Ruppeiner [9,10], Quevedo [11,12], and
HPEM [13–15]. A successful method should cover all the
mentioned points without any extra divergency for its Ricci
scalar. The existence of an extra divergency or mismatch
between the divergency of the Ricci scalar and the phase
transition (or bound points) indicate that there is a case
of anomaly. Recently, it was shown that employing Wein-
hold, Ruppeiner, and Quevedo may lead to the existence of
anomaly [13–15]. To overcome the problems of other meth-
ods, HPEM metric was proposed. The structure of the HPEM
metric is

ds2 = S
MS

M3
QQ

(−MSSdS2 + MQQdQ2), (22)

where MX = ∂M/∂X and MXX = ∂2M/∂X2. Now, by
using the total mass of black holes (20) with entropy (19)
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Fig. 1 For different scales: R (continuous line), CQ (dotted line) and T (dashed line) versus r+ for q = 1, � = −1, c = c1 = c2 = 2,
c3 = c4 = 0.2, k = 1, β = 0.5, d = 6, and α = 0.5; left panel: m = 1; three right panels: m = 5

Fig. 2 For different scales: R (continuous line), CQ (dotted line) and T (dashed line) versus r+ for q = 1, � = −1, c = c1 = c2 = 2,
c3 = c4 = 0.2, k = 1, m = 3, d = 6, and α = 0.5; up panels: β = 0.1; down panels: β = 100

and electric charge (17), one can construct the phase space
and calculate its Ricci scalar. Due to economical reasons, we
will not present the Ricci scalar obtained but rather present
its results in the following diagrams (Figs. 1, 2, 3).

Evidently, the number of phase transition points and their
places are functions of massive (Fig. 1), BI (Fig. 2), and
GB (Fig. 3) parameters. For considered values of different
parameters, these black holes enjoy the absence of bound
point. In other words, for all values of the radius of the hori-
zon, physical black holes exist. On other hand, these black
holes have a second order phase transition in their thermo-
dynamical structure. The number of these phase transitions
may vary from one (see left panel of Fig. 1 and right panel
of Fig. 3) to several (see Fig. 2) phase transitions.

The system has positive temperature but depending on the
choices of different parameters, temperature may acquire one
to several extrema. These extrema are where the heat capacity

meets a divergency. In other words, the extrema of the tem-
perature are places in which the heat capacity is divergent.
Therefore, these extrema are places in which black holes go
through the second order phase transition. The number of
divergencies in the heat capacity, and hence, of phase transi-
tions, is an increasing function of the massive (see Fig. 1) and
BI (see Fig. 2) parameters, while it is a decreasing function
of the GB parameter (see Fig. 3).

Regarding BI theory, for large values of the nonlinear-
ity parameter, the system behaves like Reissner–Nordström
black hole. This means that for large values of this parameter,
the effect of nonlinearity decreases and the system behaves
like in the presence of Maxwell theory of the electromagnetic
field. On the other hand, for small values of the nonlinear-
ity parameter, the system has Schwarzschild like behavior.
Taking these limits into account, one can draw the follow-
ing conclusions: The highest number of phase transitions,
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Fig. 3 For different scales: R (continuous line), CQ (dotted line) and T (dashed line) versus r+ for q = 1, � = −1, c = c1 = c2 = 2,
c3 = c4 = 0.2, k = 1, β = 0.5, d = 6, and m = 3; three left panels: α = 0.5; right panel: α = 2

hence, the highest complexity in the phase structure of these
black holes is acquired for a linear electromagnetic field. The
generalization to a nonlinear electromagnetic field reduces
the number of phase transitions and it may omit some of
the phase transitions. By increasing the power of the non-
linearity (decreasing the nonlinearity parameter), the system
would obtain the least number of phase transitions which
are acquirable for charged black holes in this theory of the
nonlinear electromagnetic field.

GB gravity is a higher order gravity. In other words, the
value of the Ricci scalar, which is a parameter to measure
curvature of the system, is higher in this theory of gravity
compared to Einstein gravity. Therefore, the gravity in this
theory is stronger compared to Einstein theory of gravity.
GB gravity provides an extra degree of freedom in terms
of the GB parameter. Increasing the GB parameter leads to
increasing the value of the Ricci scalar, and hence the power
of gravity. We see, for these black holes, that by increasing
the GB parameter, the number of phase transitions decreases.
This means that for a system with higher power of grav-
ity (larger curvature), the number of phase transitions and
the complexity in the phase structure of these black holes
decrease. Therefore, gravity here has an opposing effect on
the number of phase transitions.

The massive parameter is directly related to the mass of the
graviton. The plotted diagrams for the variation of the mas-
sive parameter show that as the mass of graviton increases,
the black holes under consideration go through more phase
transitions. In other words, by increasing the mass of the
graviton the complexity in thermal behavior and the phase
structure of these black holes increase.

It is evident that using the HPEM metric provides suitable
divergencies in its Ricci scalar for phase transitions that are
observed in the heat capacity. In other words, divergences
of the Ricci scalar of the HPEM metric coincide with the
phase transition points of the heat capacity. Therefore, these
two approaches yield consistent results. On the other hand,
depending on the type of phase transition (smaller to larger
or larger to smaller black holes), the sign of the divergency

of the Ricci scalar differs. If the transition is from larger to
smaller, the sign of the Ricci scalar around the corresponding
transition is positive, while the opposite (negative sign) is
observed for the transition of smaller to larger black holes.
These two differences in sign enable one to determine the
type of phase transition of a system.

4 P–V criticality through new approach

In this section, we will regard critical behavior of these black
holes through the use of a new method which was intro-
duced in Ref. [73]. This method employs the denominator
of the heat capacity of black holes to extract a relation for
the pressure. This relation is independent from the equation
of state. The maximum of the relation obtained is where the
phase transition takes place. In other words, the pressure and
radius of the horizon of the maximum of this relation is where
the system goes through the second order phase transition and
a Van der Waals like behavior is observed. In addition, the
picture that this method draws for a pressure smaller/larger
than the critical pressure is consistent with thermodynami-
cal behavior for the system with the same pressure as in the
usual thermodynamics in the other words, smaller than criti-
cal pressure, two horizon radii exist, which marks two differ-
ent phases in the phase diagrams, while for a pressure larger
than the critical pressure no phase transition is observed. This
is consistent with the behavior of the T –V diagrams in which
for the pressures larger than critical pressure, no phase transi-
tion region exists. The consistency of this method with other
methods was investigated in Refs. [45,46,74,75].

Now, we will employ this method to obtain the critical
pressure and radius of the horizon of these black holes. First,
we use the proportionality between the cosmological con-
stant and pressure,

P = − �

8π
, (23)
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with the heat capacity

CQ = T(
∂2M
∂S2

)
Q

= T(
∂T
∂S

)
Q

. (24)

Using Eq. (16), we obtain the denominator of the heat
capacity

(
∂T
∂S

)
Q in the following form:

(
∂T

∂S

)
Q

= κd3
(N − 2r2+

)
πd2N 3rd5+

+
(
3N − 2r2+

)
πd2

2N 3rd7+

×
(

4β2 (ϒ+ − 1)

ϒ+
− 2�

)
− 4h′h′′

πd2
2N 2rd8+ ϒ3+

−

×ακ2d3d4d5
(N + 2r2+

)
πd2N 3rd3+

− 2m2E
πd2N 3rd3+

, (25)

in which E is

E = d3d4

[
d5c

4c4

(
r2+ + N

2

)
+ c3c3r+

]

+r2+
[
d3c

2c2

(
r2+ − N

2

)
+ cc1r+

(
r2+ − N

)]
. (26)

Now, by solving Eq. (25) with respect to the pressure, a
relation for the pressure is obtained:

P = m2d2

8πr4+
(
r2+ + 6αk

)
{
d3d4

[
c4c

4d5

(
3r2+

2
+ kα

)

+c3c
3r3+

]
− r2+

[
c2c

2d3

(
kα − r2+

2

)
+ 2αcc1kr+

]}

− β2
(
d3r2+ + 2αkd5

)
η+

4π
(
r2+ + 6αk

)√
1 + η+

+kd2
[
αk
(
2αd5k + d9r2+

)+ d3r4+
]

16πr4+
(
r2+ + 6αk

)

− β2

4π

(
1 − 1√

1 + η+

)
. (27)

In order to study the critical behavior of these black holes,
we should see whether a maximum exists for this relation.
To do so, we employ a numerical method. The results are
presented in the following diagrams (Figs. 4, 5, 6, 7).

First of all, it is evident that due to the existence of max-
imum, these black holes enjoy a second order phase transi-
tion in their phase space. The critical pressure is a decreasing
function of the massive, GB, and BI parameters while their
corresponding critical radius of the horizon are increasing
functions of them (left panels of Figs. 4, 5, 6). On the con-
trary, the critical radius of the horizon is a decreasing function
of the dimension, while the critical pressure is an increasing
function of this parameter (left panel of Fig. 7).

Depending on the choices of the different parameters, one
may come across two interestingly different behaviors for

Fig. 4 P versus r+ (left panel) and P versus T (right panel) for q = 1,
c = c2 = c3 = c4 = 0.2, c1 = 2, β = 0.5, α = 0.5, d = 6, and k = 1;
Left panel: m = 0 (continuous line), m = 0.3 (dotted line), m = 0.5
(dashed line) and m = 0.7 (dash-dotted line)

Fig. 5 P versus r+ (left panel) and P versus T (right panel) for q = 1,
c = c2 = c3 = c4 = 0.2, c1 = 2 m = 0.5, β = 0.5, d = 6, and k = 1;
α = 0 (continuous line), α = 0.5 (dotted line), α = 1.5 (dashed line)
and α = 2 (dash-dotted line)

the P–r+ diagrams; I) in one behavior, only one extremum
exists for these diagrams (left panels of Figs. 4, 7); II) in the
other one, one minimum and one maximum exist (left panels
of Figs. 5, 6).

Considering the mentioned concept for this method, only
in a maximum a second order phase transition exists. There-
fore, we have a second order phase transition for both cases.
On the other hand, for the second behavior, for critical pres-
sure, two horizon radii exist (due to the formation of a tail).
This indicates that another branch for critical behavior exists.
This critical behavior is not a second order phase transition
but rather another kind (considering the concept of maxi-
mum). Interestingly, the second case of behavior for P–r+
is observed for small values of the nonlinearity parame-
ter and large values of the GB parameter. In other words,
for small values of the BI parameter and large values of
the GB parameter, the existence of an extra branch in the
phase diagrams of these black holes is evident (left panels of
Figs. 5, 6).

The existence of such behavior points out that another
branch for the phase diagrams exists for these black holes
which is absent in other black holes. Such a behavior is
precisely due to the existence of massive gravity. This
means that by considering a massive theory of gravity for
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Fig. 6 P versus r+ (left panel) and P versus T (middle and right panels) for q = 1, c = c2 = c3 = c4 = 0.2, c1 = 2, m = 1, α = 0.5, d = 6,
and k = 1; Middle panel: β = 0.05 (continuous line) and β = 0.5 (dotted line); right panel: β = 0.06 (continuous line) and β = 50 (dotted line)

Fig. 7 P versus r+ (left panel) and P versus T (right panel) for q = 1,
c = c2 = c3 = c4 = 0.2, c1 = 2, m = 1, α = 0.5, β = 0.5, and k = 1;
d = 6 (continuous line), d = 7 (dotted line), d = 8 (dashed line) and
d = 9 (dash-dotted line)

these black holes, another type of phase transition takes
place. This emphasizes the role and effects of massive
gravity in the thermodynamical behavior of these black
holes.

In order to complete our study here, we will plot coexis-
tence curves for the variation of different parameters as well
(right panels of Figs. 4, 5, 6, 7). The coexistence curves are
representing small/larger black holes with similar pressure
and temperature. The critical point is located at the end of
this line, which indicates that, after this point, the phase tran-
sition does not take place. Evidently, the critical temperature
is an increasing function of the massive gravity (right panel
of Fig. 4) and dimensionality (right panel of Fig. 7) while it
is a decreasing function of the GB (right panel of Fig. 5) and
BI parameters (right panel of Fig. 6). Here, in these phase
diagrams, we see that the presence of other phase transitions
is not observed. This indicates that our earlier interpretation
is right. In other words, the branch for the phase transition
which was observed in the P–r+ diagram is not a second
order phase transition. Also, we should point out that plotted
diagrams indicate that no reentering of the phase transition
takes place for these black holes.

5 Check of Maxwell equal area law for both T–S and
P–V graphs

The expressions of Hawking temperature and the entropy are
listed in Eqs. (16) and (19), respectively. For the T –r+ graph,
the possible critical point can be determined through
(

∂T

∂r+

)
q=qc,r=r+c

= 0, (28)

(
∂2T

∂r2+

)

q=qc,r=r+c

= 0. (29)

For the T –S graph, the possible critical point can be deter-
mined through
(

∂T

∂S

)
q=qc,S=Sc

= 0, (30)

(
∂2T

∂S2

)
q=qc,S=Sc

= 0. (31)

Equations (30) and (31) are related to Eqs. (28) and (29)
by
(

∂T

∂S

)
=
(

∂T

∂r+

)
/

(
∂S

∂r+

)
, (32)

(
∂2T

∂S2

)
=
(

∂
(

∂T
∂S

)
∂r+

)
/

(
∂S

∂r+

)

=

⎛
⎜⎜⎝

(
∂2T
∂r2+

)(
∂S
∂r+

)
−
(

∂T
∂r+

)(
∂2S
∂r2+

)

(
∂S
∂r+

)2

⎞
⎟⎟⎠ /

(
∂S

∂r+

)
.

(33)

Considering the above two relations and the fact that(
∂S
∂r+

)
> 0, it is not difficult to conclude that the critical

point conditions for T –r+ and T –S graphs are equivalent to
each other.
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Table 1 Effect of m on critical
quantities of T –r+ graph for
α = 0.5, β = 0.5, c = c1 =
c2 = 2, c3 = 0.2, c4 =
−0.2, d = 6,� = −0.1

m qc1 rc1 Tc1 qc2 rc2 Tc2

0 19.18887563 5.35344750 0.05519929 0.53171174 1.27585252 0.06336630

0.1 22.42316953 5.58508070 0.06071315 0.30110234 1.54894737 0.06801836

0.2 35.70639390 6.28495138 0.07690367 – – –

0.3 70.40090638 7.39745021 0.10284671 – – –

Table 2 Effect of α on critical
quantities of T –r+ graph for
m = 0.1, β = 0.5, c = c1 =
c2 = 2, c3 = 0.2, c4 =
−0.2, d = 6,� = −0.1

α qc1 rc1 Tc1 qc2 rc2 Tc2

0 67.53285621 6.97544318 0.06666372 – – –

0.3 38.80127104 6.21579271 0.06323488 0.16299321 1.05596356 0.08587341

0.5 22.42316953 5.58508070 0.06071315 0.30110234 1.54894737 0.06801836

0.7 7.91485816 4.69335274 0.05786188 – – –

Table 3 Effect of β on critical
quantities of T –r+ graph for
α = 0.5, β = 0.5, c = c1 =
c2 = 2, c3 = 0.2, c4 =
−0.2, d = 6,� = −0.1

β qc1 rc1 Tc1 qc2 rc2 Tc2

0.1 24.63144852 5.42252911 0.06064608 0.43456369 1.66031363 0.06791006

0.5 22.42316953 5.58508070 0.06071315 0.30110234 1.54894737 0.06801836

1 22.36488018 5.58910963 0.06071483 0.29659468 1.53439231 0.06802347

2 22.35039262 5.59010866 0.06071524 0.29542777 1.52977250 0.06802485

To probe the effect of massive gravity on critical quantities
of T –S graph, we fix other parameters and let m vary from 0
to 0.3. The results are listed in Table 1. One can see clearly
that for the cases m = 0 and m = 0.1, there are two critical
points, while there is only one for the cases m = 0.2 and
m = 0.3. Then we let α vary and keep other parameters fixed
to investigate the effect of GB gravity. The results are listed
in Table 2. Lastly, we let β vary and keep other parameters
fixed to study the effect of BI theory. The results are listed in
Table 3.

To gain an intuitive understanding of the Van der Waals
like behavior, we plot both T –r+ and T –S graphs for the
case m = 0.2, α = 0.5, β = 0.5, c = c1 = c2 = 2, c3 =
0.2, c4 = −0.2, d = 6,� = −0.1. From Fig. 8, one can
see clearly that both the graphs can be divided into three
branches. The medium radius branch is unstable while both
the large radius branch and the small radius branch are stable.
The unstable branch in T –S curve can be removed with a bar
vertical to the temperature axis T = T∗ as in the approach in
Ref. [76]. The possible Maxwell equal area laws for the T –S
and T –r+ graphs read

T∗(S3 − S1) =
∫ S3

S1

T dS, (34)

T∗(r3 − r1) =
∫ r3

r1

T dr+. (35)

Note that S1, S2, and S3 denote the three values of the
entropy from small to large corresponding to T = T∗, while

r1, r2, and r3 denote the three values of r+ from small to large
corresponding to T = T∗.

To determine T∗, one should first study the behavior of the
free energy (F), which can be obtained, thus:

F = M − T S = −Vd2r
d5+ (r2+ + 2d3d2ακ)

16π(r2+ + 2d4d3ακ)

×
{
m2[cr2+(cc2d3 + c1r+) + c3d4d3(cc4d5 + c3r+)]

+d3κ(r2+ + d5d4ακ)

+2r4+(2β2 − � − 2β2√1 + η+)

d2

}

+ Vd2

16π
m2rd5+ [cr2+(cc2d2 + c1r+)

+c3d3d2(cc4d4 + c3r+)]

−Vd2r
d1+ (� − 2β2 + 2β2√1 + η+)

8πd1

+Vd2d2

16π

(
rd3+ κ + d3d4r

d5+ ακ2 + 2d2q2r−d3+ H+
d1

)
.(36)

We plot the free energy for the case q = 0.2qc,m =
0.2, α = 0.5, β = 0.5, c = c1 = c2 = 2, c3 = 0.2, c4 =
−0.2, d = 6,� = −0.1 in Fig. 9, where we can find the
swallow tail characteristic of a first order phase transition.

Numerical checks of Maxwell equal area law for the cases
q = 0.2qc, 0.4qc, 0.6qc, 0.8qc are carried out in both the
T –r+ and the T –S graphs. The first order phase transition
temperature T∗ is obtained through the intersection point of
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q=0.2qc
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Fig. 8 a T vs. r+ for m = 0.2, α = 0.5, β = 0.5, c = c1 = c2 = 2, c3 = 0.2, c4 = −0.2, d = 6,� = −0.1, b T vs. S for m = 0.2, α =
0.5, β = 0.5, c = c1 = c2 = 2, c3 = 0.2, c4 = −0.2, d = 6,� = −0.1

T
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Fig. 9 F vs. T for q = 0.2qc,m = 0.2, α = 0.5, β = 0.5, c = c1 =
c2 = 2, c3 = 0.2, c4 = −0.2, d = 6,� = −0.1

the two branches in the free energy curve. As shown in Tables
4 and 5, the relative errors are very small and the Maxwell
equal area law holds for not only T –r+ curves, but also T –S
curves.

The possible Maxwell equal area laws for the P–r+ and
P–V graphs read

P∗(r3 − r1) =
∫ r3

r1

Pdr+, (37)

P∗(V3 − V1) =
∫ V3

V1

PdV . (38)

Here, r1, r2, and r3 denote the three values of r+ from
small to large corresponding to P = P∗ in P–r+ graph while
V1, V2, and V3 denote the three values of V from small to
large corresponding to P = P∗ in P–V graph. Note that the
thermodynamic volume V is defined in the extended phase
space as V = (

∂M
∂P

)
S,Q . For the cases P∗ = 0.5Pc, 0.6Pc,

0.7Pc, 0.8Pc, we use the technique of the Gibbs free energy
to determine the corresponding T∗, which is shown in the
first column of Tables 6 and 7. Since the mass of a black hole

should be interpreted as the enthalpy in the extended phase
space, the definition of the Gibbs free energy reads

G = H − T S = M − T S. (39)

We plot the Gibbs free energy for the case P∗ =
0.5Pc,m = 0.5, α = 0.8/6, β = 0.5, c = c1 = c2 =
2, c3 = 0.2, c4 = −0.2, d = 6, q = 1 in Fig. 10. The clas-
sical swallow tail behavior can also be found. We further
calculate both the left hand side and the right hand side of
Eqs. (37) and (38). As shown in Tables 6 and 7, the relative
errors for the P–r+ graph are very large while those for the
P–V graph are amazingly small, leading to the conclusion
that the Maxwell equal area law holds for the P–V graph,
while it fails for the P–r+ graph. Our numerical results here
for the GB–BI–massive black holes further corroborate the
findings in previous research [77,78].

6 Critical exponents

To characterize the critical behavior near the critical point in
the extended phase space, one usually introduces the follow-
ing critical exponents:

CV ∝ |t |−α1, (40)

η ∝ |t |β1, (41)

κT ∝ |t |−γ , (42)

|P − Pc| ∝ |v − vc|δ. (43)

Note that we use the notations α1 and β1 instead of the
classical notation α and β here because α and β already
have other meanings in this paper. As can be seen from the
above definitions, the exponents α1, β1, γ , and δ describe
the behavior of specific heat CV , the order parameter η,
the isothermal compressibility coefficient κT , and the crit-
ical isotherm, respectively.
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Table 4 Numerical check of Maxwell equal area law for T –r+ graph for m = 0.2, α = 0.5, β = 0.5, c = c1 = c2 = 2, c3 = 0.2, c4 = −0.2, d =
6,� = −0.1

q T∗ r1 r2 r3 T∗(r3 − r1)
∫ r3
r1

T dr+ Relative error

0.2qc 0.077968093 2.668179599 5.831521024 8.610961493 0.463347371 0.468423238 1.08361 × 10−2

0.4qc 0.077709445 3.460484711 5.961743318 8.320522932 0.377670873 0.379524375 4.88375 × 10−3

0.6qc 0.077443230 4.150221293 6.082516075 7.965173990 0.295442259 0.295984384 1.83160 × 10−3

0.8qc 0.077174217 4.875672340 6.189311151 7.492034394 0.201915693 0.201996209 3.98602 × 10−4

Table 5 Numerical check of Maxwell equal area law for T –S graph for m = 0.2, α = 0.5, β = 0.5, c = c1 = c2 = 2, c3 = 0.2, c4 = −0.2, d =
6,� = −0.1

q T∗ S1 S2 S3 T∗(S3 − S1)
∫ S3
S1

T dS Relative error

0.2qc 0.077968093 895.587288070 10294.201627482 42030.087706891 3207.178554163 3207.178545951 2.56051 × 10−9

0.4qc 0.077709445 1889.035616718 11118.238437108 37002.585804846 2728.654497099 2728.654509847 4.67190 × 10−9

0.6qc 0.077443230 3312.040653402 11927.365360006 31493.701542953 2182.478846051 2182.478875402 1.34485 × 10−8

0.8qc 0.077174217 5595.294205719 12680.211012687 25162.285938926 1510.067266056 1510.067258972 4, 69118 × 10−9

Table 6 Numerical check of Maxwell equal area law for the P–r+ graph for m = 0.5, α = 0.8/6, β = 0.5, c = c1 = c2 = 2, c3 = 0.2, c4 =
−0.2, d = 6, q = 1

T∗ P∗ r1 r2 r3 P∗(r3 − r1)
∫ r3
r1

Pdr+ Relative error

0.307158782 0.019064415 (0.5Pc) 1.300131202 4.377441744 6.821914504 0.105269568 0.069352210 0.517898

0.325263118 0.022877298 (0.6Pc) 1.416781872 3.915076926 5.952121403 0.103756314 0.084296053 0.230856

0.340839656 0.026690181 (0.7Pc) 1.553413113 3.546020766 5.217265181 0.097788875 0.088679752 0.102719

0.354238750 0.030503064 (0.8Pc) 1.726021434 3.239493661 4.550601329 0.086158341 0.082939703 0.038807

Before calculating the above critical exponents, it would
be convenient to define

t = T

Tc
− 1, ε = v

vc
− 1, p = P

Pc
. (44)

The equation of state in the extended phase space has been
derived in Ref. [1]:

P = d2(2κα′ + r2+)T

4r3+

−m2cd2[d3d4c2(d5cc4 + c3r+) + r2+(d3cc2 + c1r+)]
16πr4+

+β2(
√

1 + η+ − 1)

4π
− d2κ(d5κα′ + d3r2+)

16πr4+
, (45)

where α′ = d3d4α, η+ = d2d3q2

2β2r
2d2+

. Identifying the specific

volume v as v = 4r+
d2

, the equation of state can be reorganized
as

P = T

v
+ 32κd3d4αT

d2
2 v3

−m2c[16d3d4c2(4d5cc4 + c3d2v) + d2
2 v2(4d3cc2 + c1d2v)]

4πd3
2v4

+
β2
(√

1 + d2d3q242d2

2β2d
2d2
2 v2d2

− 1

)

4π
− κ(16d5κd3d4α + d3d2

2 v2)

πd3
2v4

.

(46)

Then the equation of state in the extended phase space can
be expanded as

p = 1+ p10t+ p01ε + p11tε + p02ε
2 + p03ε

3 +O(tε2, ε4),

(47)

where the expansion coefficients can be calculated as

p01 = p02 = 0, (48)

p10 = Tc
vc Pc

+ 32d3d4ακTc
d2

2 v3
c Pc

, (49)

p11 = − Tc
vc Pc

− 96d3d4ακTc
d2

2 v3
c Pc

, (50)

p03 = − Tc
vc Pc

+ 4d3κ[d2vc(d2vc − 80d4Tcα) + 80d4d5ακ]
Pcd3

2 v4
cπ
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Table 7 Numerical check of Maxwell equal area law for the P–V graph for m = 0.2, α = 0.5, β = 0.5, c = c1 = c2 = 2, c3 = 0.2, c4 =
−0.2, d = 6,� = −0.1

T P∗ V1 V2 V3 P∗(V3 − V1)
∫ V3
V1

PdV Relative error

0.307158782 0.019064415 (0.5Pc) 19.553945 8460.584140 77773.176052 1482.327320 1482.327341 1.41669 × 10−8

0.325263118 0.022877298 (0.6Pc) 30.047852 4841.723366 39323.971901 898.938810 898.938820 1.11242 × 10−8

0.340839656 0.026690181 (0.7Pc) 47.613851 2951.242158 20347.592453 541.810103 541.810105 3.69133 × 10−9

0.354238750 0.030503064 (0.8Pc) 80.636078 1877.950521 10271.702205 310.858742 310.858740 6.43379 × 10−9
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Fig. 10 G vs. T for P∗ = 0.5Pc,m = 0.5, α = 0.8/6, β = 0.5, c =
c1 = c2 = 2, c3 = 0.2, c4 = −0.2, d = 6, q = 1

+ cm2(1280c3c4d3d4d5 + 160c2c3d2d3d4vc + 16cc2d2
2d3v

2
c + c1d3

2 v3
c )

4Pcd3
2 v4

cπ

−[256d2d2−2d2
2 (1 + d2)(2 + d2)d

2
3q

4 + 21+4d2d2

×(4 + d2)(1 + 2d2)d3q
2v2d2

c β2 + 8d2d2
2

×(1 + d2)(1 + 2d2)v
4d2
c β4]

× 2
1
2 +4d2d2

2d3q2v
−2d2
c

48Pcπ

√
2 + 16d2 d

1−2d2
2 d3q2v

−2d2
c

β2 (16d2d2d3q2 + 2d2d2
2 v

2d2
c β2)2

. (51)

From the equal area law, one can further derive

∫ εs

εl

ε
dp

dε
dε = 0, (52)

where dp
dε

can be calculated as p11t + 3p03ε
2. Denoting by

the subscripts “l” and “s” as the quantity of large black hole
and small black hole, respectively, one can obtain

p11t (ε
2
s − ε2

l ) + 3

2
p03(ε

4
s − ε4

l ) = 0. (53)

On the other hand, the pressure of the large black hole
equals that of the small black hole as follows:

1+ p10t+ p11tεl + p03ε
3
l = 1+ p10t+ p11tεs+ p03ε

3
s , (54)

because during the phase transition the pressure of the black
hole keeps unchanged.

With Eqs. (53) and (54), one can get

εl = −εs =
√

−p11t

p03
. (55)

So the order parameter can be derived as

η = vl − vs = vc(εl − εs) = 2vcεl ∝ √−t, (56)

leading to the conclusion that β1 = 1/2.
It is not difficult to deduce that

κT = −1

v

∂v

∂P

∣∣∣∣
vc

∝ − 1
∂p
∂ε

∣∣∣∣∣
ε=0

= − 1

p11t
, (57)

from which one can draw the conclusion that γ = 1.
One can obtain the critical isotherm by substituting t = 0

into Eq. (47),

p − 1 = p03ε
3, (58)

implying that δ = 3.
The entropy S does not depend on the Hawking tempera-

ture T . So the specific heat with fixed volume CV is equal to
zero, with the critical exponent α1 = 0.

The above exponents are totally the same as those in the
previous literature. This can be attributed to the effect of
mean field theory.

7 Analytical check of the Ehrenfest equations
at the critical point in the extended phase space

It is important to classify the nature of the phase transition. As
is well know, the Clausius–Clapeyron equation is satisfied for
a first order phase transition, while for a second order phase
transition one can utilize the famous Ehrenfest equations as
follows:(

∂P

∂T

)
S

= CP2 − CP1

VT (α̃2 − α̃1)
= �CP

V T�α̃
, (59)

(
∂P

∂T

)
V

= α̃2 − α̃1

κT2 − κT1

= �α̃

�κT
, (60)
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where the volume expansion coefficient α̃ = 1
V ( ∂V

∂T )P and
isothermal compressibility coefficient κT = − 1

V ( ∂V
∂P )T .

Note that we use the notation α̃ instead of the classical nota-
tion α here because α already has another meaning in this
paper.

Utilizing the definition of α̃, one can derive

V α̃ =
(

∂V

∂T

)
P

=
(

∂V

∂S

)
P

(
∂S

∂T

)
P

=
(

∂V

∂S

)
P

(
CP

T

)
.

(61)

So the R.H.S. of Eq. (59) can be obtained:

�CP

T V�α̃
=
[(

∂S

∂V

)
P

]
c
. (62)

The subscript “c” here denotes the corresponding quantity
at the critical point. It is not difficult to obtain

�CP

T V�α̃
= d2(r2

c + 2d4d3ακ)

4r3
c

. (63)

Utilizing Eq. (45), the L.H.S. of Eq. (59) can be derived
as

[(
∂P

∂T

)
S

]
c

= d2(r2
c + 2d4d3ακ)

4r3
c

. (64)

From Eqs. (63) and (64), we can draw the conclusion that
the first equation of the Ehrenfest equations is valid at the
critical point.

The L.H.S. of Eq. (60) can be obtained:

[(
∂P

∂T

)
V

]
c

= d2(r2
c + 2d4d3ακ)

4r3
c

. (65)

With both the definitions of κT and of α̃, one can deduce

V κT = −
(

∂V

∂P

)
T

=
(

∂T

∂P

)
V

(
∂V

∂T

)
P

=
(

∂T

∂P

)
V
V α̃,

(66)

from which we can calculate the R.H.S of Eq. (60) and get

�α̃

�κT
=
[(

∂P

∂T

)
V

]
c

= d2(r2
c + 2d4d3ακ)

4r3
c

. (67)

In the derivation of Eq. (66), we have utilized the ther-
modynamic identity ( ∂V

∂P )T ( ∂T
∂V )P ( ∂P

∂T )V = −1. Equation
(67) reveals the validity of the second equation of the Ehren-
fest equations. With Eqs. (63) and (67), the Prigogine–Defay
(PD) ratio can be calculated as

� = �CP�κT

T V (�α̃)2 = 1. (68)

The above equation and the validity of the Ehrenfest equa-
tions show that GB–BI–massive black holes undergo a sec-
ond order phase transition at the critical point of P–V critical-
ity in the extended phase space. The result here is consistent
with the nature of a liquid–gas phase transition at the criti-
cal point and supports the findings in the previous literature
[79–81].

8 Closing remarks

In this paper, we have studied the thermodynamical behavior
of Einstein–GB–massive black holes in the presence of a BI
nonlinear electromagnetic field near the critical point.

First, some comments regarding the effects of mass of
graviton, nonlinearity of the electromagnetic field, and power
of gravity (value of the GB curvature term) on the phase struc-
ture and its complexity were given. In addition, geometrical
thermodynamics was used to investigate the liquid–gas tran-
sition of these black holes based on the canonical ensemble.

Next, by using the denominator of the heat capacity and
the proportionality between the cosmological constant and
the thermodynamic pressure, critical behavior of these black
holes was investigated. It was shown that these black holes
enjoy an anomaly in their phase structure. In other words, in
addition to the Van der Waals like phase transition in their
phase diagrams, these black holes enjoy another type of phase
transition which is different from the usual Van der Waals like
phase transition. The plotted coexistence curves also con-
firmed that only one second order phase transition exists for
these black holes.

Moreover, the Maxwell equal area law was employed to
investigate the Van der Waals like behavior and structure of
these black holes. It was shown that the Maxwell equal area
law holds for the T –r+, T –S, and P–V diagrams while it fails
regarding the P–r+ curves. Calculations regarding the criti-
cal exponent showed that these exponents are independent of
massive gravity and are the same as those derived previously.
Finally, the Ehrenfest equations were used to determine the
type of phase transition. It was shown that these black holes
undergo a second order phase transition at the critical point.
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