2,290 research outputs found
Galactose Ingested with a High-Fat Beverage Increases Postprandial Lipemia Compared with Glucose but Not Fructose Ingestion in Healthy Men.
BACKGROUND: Fructose ingestion with a high-fat beverage increases postprandial lipemia when compared with glucose. It is unknown whether other sugars, such as galactose, also increase postprandial lipemia. OBJECTIVES: The objective was to assess whether galactose ingestion within a high-fat beverage increases postprandial lipemia relative to glucose or fructose. METHODS: Two experiments were conducted, which contrasted different test drinks under otherwise standardized conditions. In Experiment 1, 10 nonobese men (age: 22 ± 1 y; BMI, 23.5 ± 2.2 kg/2) ingested either galactose or glucose (0.75 g supplemented carbohydrate per⋅kilogram body mass) within a high-fat test drink (0.94 g fat per kilogram body mass). In Experiment 2, a separate group of 9 nonobese men (age: 26 ± 6 y; BMI: 23.5 ± 2.6 kg/m2) ingested either galactose or fructose (identical doses as those in Experiment 1) within the same high-fat test drink. Capillary blood was sampled before and at frequent intervals after ingestion of the test drinks for a 300-min period to determine plasma triacylglycerol, glucose, lactate, nonesterified fatty acid, and insulin concentrations. Paired t tests and 2-way, repeated-measures ANOVA were used to compare conditions within each experiment. RESULTS: The incremental AUC for triacylglycerol was greater following galactose ingestion compared with glucose (127 ± 59 compared with 80 ± 48 mmol⋅L-1 × 300 min, respectively; P = 0.04) but not compared with fructose (136 ± 74 compared with 133 ± 63 mmol⋅L-1 ×300 min, respectively; P = 0.91). Plasma lactate concentrations also increased to a greater extent with galactose compared with glucose ingestion (time-condition interaction: P < 0.001) but not fructose ingestion (time-condition interaction: P = 0.17). CONCLUSIONS: Galactose ingestion within a high-fat beverage exacerbates postprandial lipemia and plasma lactate concentrations compared with glucose but not fructose in nonobese men. These data suggest that galactose metabolism may be more similar to fructose than to glucose, providing a rationale to reassess the metabolic fate of galactose ingestion in humans. This trial was registered at clinicaltrials.gov as NCT03439878
Safe and complete contig assembly via omnitigs
Contig assembly is the first stage that most assemblers solve when
reconstructing a genome from a set of reads. Its output consists of contigs --
a set of strings that are promised to appear in any genome that could have
generated the reads. From the introduction of contigs 20 years ago, assemblers
have tried to obtain longer and longer contigs, but the following question was
never solved: given a genome graph (e.g. a de Bruijn, or a string graph),
what are all the strings that can be safely reported from as contigs? In
this paper we finally answer this question, and also give a polynomial time
algorithm to find them. Our experiments show that these strings, which we call
omnitigs, are 66% to 82% longer on average than the popular unitigs, and 29% of
dbSNP locations have more neighbors in omnitigs than in unitigs.Comment: Full version of the paper in the proceedings of RECOMB 201
Preliminary interpretation of Titan plasma interaction as observed by the Cassini Plasma Spectrometer: Comparisons with Voyager 1
The Cassini Plasma Spectrometer (CAPS) instrument observed the plasma environment at Titan during the Cassini orbiter's TA encounter on October 26, 2004. Titan was in Saturn's magnetosphere during the Voyager 1 flyby and also during the TA encounter. CAPS measurements from this encounter are compared with measurements made by the Voyager 1 Plasma Science Instrument (PLS). The comparisons focus on the composition and nature of ambient and pickup ions. They lead to: A) the major ion components of Saturn's magnetosphere in the vicinity of Titan are H+, H-2(+) and O+/CH4+ ions; B) finite gyroradius effects are apparent in ambient O+ ions as the result of their absorption by Titan's extended atmosphere; C) the principal pickup ions are composed of H+, H-2(+), N+/CH2+, CH4+, and N-2(+); D) the pickup ions are in narrow energy ranges; and E) there is clear evidence of the slowing down of background ions due to pickup ion mass loading
Targeted Assembly of Short Sequence Reads
As next-generation sequence (NGS) production continues to increase, analysis is becoming a significant bottleneck. However, in situations where information is required only for specific sequence variants, it is not necessary to assemble or align whole genome data sets in their entirety. Rather, NGS data sets can be mined for the presence of sequence variants of interest by localized assembly, which is a faster, easier, and more accurate approach. We present TASR, a streamlined assembler that interrogates very large NGS data sets for the presence of specific variants, by only considering reads within the sequence space of input target sequences provided by the user. The NGS data set is searched for reads with an exact match to all possible short words within the target sequence, and these reads are then assembled strin-gently to generate a consensus of the target and flanking sequence. Typically, variants of a particular locus are provided as different target sequences, and the presence of the variant in the data set being interrogated is revealed by a successful assembly outcome. However, TASR can also be used to find unknown sequences that flank a given target. We demonstrate that TASR has utility in finding or confirming ge-nomic mutations, polymorphism, fusion and integration events. Targeted assembly is a powerful method for interrogating large data sets for the presence of sequence variants of interest. TASR is a fast, flexible and easy to use tool for targeted assembly
Real-Time 3D Image Guidance Using a Standard LINAC: Measured Motion, Accuracy, and Precision of the First Prospective Clinical Trial of Kilovoltage Intrafraction Monitoring-Guided Gating for Prostate Cancer Radiation Therapy.
PURPOSE: Kilovoltage intrafraction monitoring (KIM) is a new real-time 3-dimensional image guidance method. Unlike previous real-time image guidance methods, KIM uses a standard linear accelerator without any additional equipment needed. The first prospective clinical trial of KIM is underway for prostate cancer radiation therapy. In this paper we report on the measured motion accuracy and precision using real-time KIM-guided gating. METHODS AND MATERIALS: Imaging and motion information from the first 200 fractions from 6 patient prostate cancer radiation therapy volumetric modulated arc therapy treatments were analyzed. A 3-mm/5-second action threshold was used to trigger a gating event where the beam is paused and the couch position adjusted to realign the prostate to the treatment isocenter. To quantify the in vivo accuracy and precision, KIM was compared with simultaneously acquired kV/MV triangulation for 187 fractions. RESULTS: KIM was successfully used in 197 of 200 fractions. Gating events occurred in 29 fractions (14.5%). In these 29 fractions, the percentage of beam-on time, the prostate displacement was >3 mm from the isocenter position, reduced from 73% without KIM to 24% with KIM-guided gating. Displacements >5 mm were reduced from 16% without KIM to 0% with KIM. The KIM accuracy was measured at <0.3 mm in all 3 dimensions. The KIM precision was <0.6 mm in all 3 dimensions. CONCLUSIONS: Clinical implementation of real-time KIM image guidance combined with gating for prostate cancer eliminates large prostate displacements during treatment delivery. Both in vivo KIM accuracy and precision are well below 1 mm
On the Importance of Countergradients for the Development of Retinotopy: Insights from a Generalised Gierer Model
During the development of the topographic map from vertebrate retina to superior colliculus (SC), EphA receptors are expressed in a gradient along the nasotemporal retinal axis. Their ligands, ephrin-As, are expressed in a gradient along the rostrocaudal axis of the SC. Countergradients of ephrin-As in the retina and EphAs in the SC are also expressed. Disruption of any of these gradients leads to mapping errors. Gierer's (1981) model, which uses well-matched pairs of gradients and countergradients to establish the mapping, can account for the formation of wild type maps, but not the double maps found in EphA knock-in experiments. I show that these maps can be explained by models, such as Gierer's (1983), which have gradients and no countergradients, together with a powerful compensatory mechanism that helps to distribute connections evenly over the target region. However, this type of model cannot explain mapping errors found when the countergradients are knocked out partially. I examine the relative importance of countergradients as against compensatory mechanisms by generalising Gierer's (1983) model so that the strength of compensation is adjustable. Either matching gradients and countergradients alone or poorly matching gradients and countergradients together with a strong compensatory mechanism are sufficient to establish an ordered mapping. With a weaker compensatory mechanism, gradients without countergradients lead to a poorer map, but the addition of countergradients improves the mapping. This model produces the double maps in simulated EphA knock-in experiments and a map consistent with the Math5 knock-out phenotype. Simulations of a set of phenotypes from the literature substantiate the finding that countergradients and compensation can be traded off against each other to give similar maps. I conclude that a successful model of retinotopy should contain countergradients and some form of compensation mechanism, but not in the strong form put forward by Gierer
Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs
<p>Abstract</p> <p>Background</p> <p>Assembling genomic sequences from a set of overlapping reads is one of the most fundamental problems in computational biology. Algorithms addressing the assembly problem fall into two broad categories <b>- </b>based on the data structures which they employ. The first class uses an overlap/string graph and the second type uses a de Bruijn graph. However with the recent advances in short read sequencing technology, de Bruijn graph based algorithms seem to play a vital role in practice. Efficient algorithms for building these massive de Bruijn graphs are very essential in large sequencing projects based on short reads. In an earlier work, an <it>O</it>(<it>n/p</it>) time parallel algorithm has been given for this problem. Here <it>n </it>is the size of the input and <it>p </it>is the number of processors. This algorithm enumerates all possible bi-directed edges which can overlap with a node and ends up generating Θ(<it>n</it>Σ) messages (Σ being the size of the alphabet).</p> <p>Results</p> <p>In this paper we present a Θ(<it>n/p</it>) time parallel algorithm with a communication complexity that is equal to that of parallel sorting and is not sensitive to Σ. The generality of our algorithm makes it very easy to extend it even to the out-of-core model and in this case it has an optimal I/O complexity of <inline-formula><m:math name="1471-2105-11-560-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:mrow><m:mo>Θ</m:mo><m:mo stretchy="false">(</m:mo><m:mfrac><m:mrow><m:mi>n</m:mi><m:mi>log</m:mi><m:mo stretchy="false">(</m:mo><m:mi>n</m:mi><m:mo>/</m:mo><m:mi>B</m:mi><m:mo stretchy="false">)</m:mo></m:mrow><m:mrow><m:mi>B</m:mi><m:mi>log</m:mi><m:mo stretchy="false">(</m:mo><m:mi>M</m:mi><m:mo>/</m:mo><m:mi>B</m:mi><m:mo stretchy="false">)</m:mo></m:mrow></m:mfrac><m:mo stretchy="false">)</m:mo></m:mrow></m:math></inline-formula> (<it>M </it>being the main memory size and <it>B </it>being the size of the disk block). We demonstrate the scalability of our parallel algorithm on a SGI/Altix computer. A comparison of our algorithm with the previous approaches reveals that our algorithm is faster <b>- </b>both asymptotically and practically. We demonstrate the scalability of our sequential out-of-core algorithm by comparing it with the algorithm used by VELVET to build the bi-directed de Bruijn graph. Our experiments reveal that our algorithm can build the graph with a constant amount of memory, which clearly outperforms VELVET. We also provide efficient algorithms for the bi-directed chain compaction problem.</p> <p>Conclusions</p> <p>The bi-directed de Bruijn graph is a fundamental data structure for any sequence assembly program based on Eulerian approach. Our algorithms for constructing Bi-directed de Bruijn graphs are efficient in parallel and out of core settings. These algorithms can be used in building large scale bi-directed de Bruijn graphs. Furthermore, our algorithms do not employ any all-to-all communications in a parallel setting and perform better than the prior algorithms. Finally our out-of-core algorithm is extremely memory efficient and can replace the existing graph construction algorithm in VELVET.</p
Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology
Placental abnormalities are associated with two of the most common and serious complications of human pregnancy, maternal preeclampsia (PE) and fetal intrauterine growth restriction (IUGR), each disorder affecting ∼5% of all pregnancies. An important question for the use of the mouse as a model for studying human disease is the degree of functional conservation of genetic control pathways from human to mouse. The human and mouse placenta show structural similarities, but there have been no systematic attempts to assess their molecular similarities or differences. We collected protein and mRNA expression data through shot-gun proteomics and microarray expression analysis of the highly vascular exchange region, microdissected from the human and mouse near-term placenta. Over 7000 ortholog genes were detected with 70% co-expressed in both species. Close to 90% agreement was found between our human proteomic results and 1649 genes assayed by immunohistochemistry for expression in the human placenta in the Human Protein Atlas. Interestingly, over 80% of genes known to cause placental phenotypes in mouse are co-expressed in human. Several of these phenotype-associated proteins form a tight protein–protein interaction network involving 15 known and 34 novel candidate proteins also likely important in placental structure and/or function. The entire data are available as a web-accessible database to guide the informed development of mouse models to study human disease
Does inter-vertebral range of motion increase after spinal manipulation? A prospective cohort study.
Background: Spinal manipulation for nonspecific neck pain is thought to work in part by improving inter-vertebral range of motion (IV-RoM), but it is difficult to measure this or determine whether it is related to clinical outcomes.
Objectives: This study undertook to determine whether cervical spine flexion and extension IV-RoM increases after a course of spinal manipulation, to explore relationships between any IV-RoM increases and clinical outcomes and to compare palpation with objective measurement in the detection of hypo-mobile segments.
Method: Thirty patients with nonspecific neck pain and 30 healthy controls matched for age and gender received quantitative fluoroscopy (QF) screenings to measure flexion and extension IV-RoM (C1-C6) at baseline and 4-week follow-up between September 2012-13. Patients received up to 12 neck manipulations and completed NRS, NDI
and Euroqol 5D-5L at baseline, plus PGIC and satisfaction questionnaires at follow-up. IV-RoM accuracy, repeatability and hypo-mobility cut-offs were determined. Minimal detectable changes (MDC) over 4 weeks were calculated
from controls. Patients and control IV-RoMs were compared at baseline as well as changes in patients over 4 weeks. Correlations between outcomes and the number of manipulations received and the agreement (Kappa) between palpated and QF-detected of hypo-mobile segments were calculated.
Results: QF had high accuracy (worst RMS error 0.5o) and repeatability (highest SEM 1.1o, lowest ICC 0.90) for
IV-RoM measurement. Hypo-mobility cut offs ranged from 0.8o to 3.5o. No outcome was significantly correlated with increased IV-RoM above MDC and there was no significant difference between the number of hypo-mobile segments in patients and controls at baseline or significant increases in IV-RoMs in patients. However, there was a modest and significant correlation between the number of manipulations received and the number of levels and directions whose IV-RoM increased beyond MDC (Rho=0.39, p=0.043). There was also no agreement between palpation and QF in identifying hypo-mobile segments (Kappa 0.04-0.06).
Conclusions: This study found no differences in cervical sagittal IV-RoM between patients with non-specific neck pain and matched controls. There was a modest dose-response relationship between the number of manipulations given and number of levels increasing IV-RoM - providing evidence that neck manipulation has a mechanical effect at segmental levels. However, patient-reported outcomes were not related to this
- …