8,010 research outputs found

    Zero-Annotation Object Detection with Web Knowledge Transfer

    Full text link
    Object detection is one of the major problems in computer vision, and has been extensively studied. Most of the existing detection works rely on labor-intensive supervision, such as ground truth bounding boxes of objects or at least image-level annotations. On the contrary, we propose an object detection method that does not require any form of human annotation on target tasks, by exploiting freely available web images. In order to facilitate effective knowledge transfer from web images, we introduce a multi-instance multi-label domain adaption learning framework with two key innovations. First of all, we propose an instance-level adversarial domain adaptation network with attention on foreground objects to transfer the object appearances from web domain to target domain. Second, to preserve the class-specific semantic structure of transferred object features, we propose a simultaneous transfer mechanism to transfer the supervision across domains through pseudo strong label generation. With our end-to-end framework that simultaneously learns a weakly supervised detector and transfers knowledge across domains, we achieved significant improvements over baseline methods on the benchmark datasets.Comment: Accepted in ECCV 201

    Monolithic millimeter-wave diode grid frequency multiplier arrays

    Get PDF
    Monolithic diode frequency multiplier arrays, including barrier-N-N(+) (BNN) doubler, multi-quantum-barrier-varactor (MQBV) tripler, Schottky-quantum-barrier-varactor (SQBV) tripler, and resonant-tunneling-diode (RTD) tripler arrays, have been successfully fabricated with yields between 85 and 99 percent. Frequency doubling and/or tripling have been observed for all the arrays. Output powers of 2.4-2.6 W (eta = 10-18 percent) at 66 GHz with the BNN doubler and 3.8-10 W (eta = 1.7-4 percent) at 99 GHz with the SQBV tripler have been achieved

    Open-ended evolution to discover analogue circuits for beyond conventional applications

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10710-012-9163-8. Copyright @ Springer 2012.Analogue circuits synthesised by means of open-ended evolutionary algorithms often have unconventional designs. However, these circuits are typically highly compact, and the general nature of the evolutionary search methodology allows such designs to be used in many applications. Previous work on the evolutionary design of analogue circuits has focused on circuits that lie well within analogue application domain. In contrast, our paper considers the evolution of analogue circuits that are usually synthesised in digital logic. We have developed four computational circuits, two voltage distributor circuits and a time interval metre circuit. The approach, despite its simplicity, succeeds over the design tasks owing to the employment of substructure reuse and incremental evolution. Our findings expand the range of applications that are considered suitable for evolutionary electronics

    Characterization of physicochemical properties of ivy nanoparticles for cosmetic application

    Get PDF
    Background Naturally occurring nanoparticles isolated from English ivy (Hedera helix) have previously been proposed as an alternative to metallic nanoparticles as sunscreen fillers due to their effective UV extinction property, low toxicity and potential biodegradability. Methods This study focused on analyzing the physicochemical properties of the ivy nanoparticles, specifically, those parameters which are crucial for use as sunscreen fillers, such as pH, temperature, and UV irradiation. The visual transparency and cytotoxicity of ivy nanoparticles were also investigated comparing them with other metal oxide nanoparticles. Results Results from this study demonstrated that, after treatment at 100°C, there was a clear increase in the UV extinction spectra of the ivy nanoparticles caused by the partial decomposition. In addition, the UVA extinction spectra of the ivy nanoparticles gradually reduced slightly with the decrease of pH values in solvents. Prolonged UV irradiation indicated that the influence of UV light on the stability of the ivy nanoparticle was limited and time-independent. Compared to TiO2 and ZnO nanoparticles, ivy nanoparticles showed better visual transparency. Methylthiazol tetrazolium assay demonstrated that ivy nanoparticles exhibited lower cytotoxicity than the other two types of nanoparticles. Results also suggested that protein played an important role in modulating the three-dimensional structure of the ivy nanoparticles. Conclusions Based on the results from this study it can be concluded that the ivy nanoparticles are able to maintain their UV protective capability at wide range of temperature and pH values, further demonstrating their potential as an alternative to replace currently available metal oxide nanoparticles in sunscreen applications. doi:10.1186/1477-3155-11-

    Characterization of physicochemical properties of ivy nanoparticles for cosmetic application

    Get PDF
    Background Naturally occurring nanoparticles isolated from English ivy (Hedera helix) have previously been proposed as an alternative to metallic nanoparticles as sunscreen fillers due to their effective UV extinction property, low toxicity and potential biodegradability. Methods This study focused on analyzing the physicochemical properties of the ivy nanoparticles, specifically, those parameters which are crucial for use as sunscreen fillers, such as pH, temperature, and UV irradiation. The visual transparency and cytotoxicity of ivy nanoparticles were also investigated comparing them with other metal oxide nanoparticles. Results Results from this study demonstrated that, after treatment at 100°C, there was a clear increase in the UV extinction spectra of the ivy nanoparticles caused by the partial decomposition. In addition, the UVA extinction spectra of the ivy nanoparticles gradually reduced slightly with the decrease of pH values in solvents. Prolonged UV irradiation indicated that the influence of UV light on the stability of the ivy nanoparticle was limited and time-independent. Compared to TiO2 and ZnO nanoparticles, ivy nanoparticles showed better visual transparency. Methylthiazol tetrazolium assay demonstrated that ivy nanoparticles exhibited lower cytotoxicity than the other two types of nanoparticles. Results also suggested that protein played an important role in modulating the three-dimensional structure of the ivy nanoparticles. Conclusions Based on the results from this study it can be concluded that the ivy nanoparticles are able to maintain their UV protective capability at wide range of temperature and pH values, further demonstrating their potential as an alternative to replace currently available metal oxide nanoparticles in sunscreen applications

    Dietary intake relative to cardiovascular disease risk factors in individuals with chronic spinal cord injury: a pilot study

    Get PDF
    BACKGROUND: The relationship between cardiovascular disease (CVD) risk factors and dietary intake is unknown among individuals with spinal cord injury (SCI). OBJECTIVE: To investigate the relationship between consumption of selected food groups (dairy, whole grains, fruits, vegetables, and meat) and CVD risk factors in individuals with chronic SCI. METHODS: A cross-sectional substudy of individuals with SCI to assess CVD risk factors and dietary intake in comparison with age-, gender-, and race-matched able-bodied individuals enrolled in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Dietary history, blood pressure, waist circumference (WC), fasting blood glucose, high-sensitivity C-reactive protein (hs-CRP), lipids, glucose, and insulin data were collected from 100 SCI participants who were 38 to 55 years old with SCI >1 year and compared to 100 matched control participants from the CARDIA study. RESULTS: Statistically significant differences between SCI and CARDIA participants were identified in WC (39.2 vs 36.2 in.; P < .001) and high-density lipoprotein cholesterol (HDL-C; 39.2 vs 47.5 mg/dL; P < .001). Blood pressure, total cholesterol, triglycerides, glucose, insulin, and hs-CRP were similar between SCI and CARDIA participants. No significant relation between CVD risk factors and selected food groups was seen in the SCI participants. CONCLUSION: SCI participants had adverse WC and HDL-C compared to controls. This study did not identify a relationship between consumption of selected food groups and CVD risk factors

    Low thermal resistance of a GaN-on-SiC transistor structure with improved structural properties at the interface

    Get PDF
    The crystalline quality of AlGaN/GaN heterostructures was improved by optimization of surface pretreatment of the SiC substrate in a hot-wall metal-organic chemical vapor deposition reactor. X-ray photoelectron spectroscopy measurements revealed that oxygen- and carbon-related contaminants were still present on the SiC surface treated at 1200 \ub0C in H2 ambience, which hinders growth of thin AlN nucleation layers with high crystalline quality. As the H2 pretreatment temperature increased to 1240 \ub0C, the crystalline quality of the 105 nm thick AlN nucleation layers in the studied series reached an optimal value in terms of full width at half-maximum of the rocking curves of the (002) and (105) peaks of 64 and 447 arcsec, respectively. The improvement of the AlN growth also consequently facilitated a growth of the GaN buffer layers with high crystalline quality. The rocking curves of the GaN (002) and (102) peaks were thus improved from 209 and 276 arcsec to 149 and 194 arcsec, respectively. In addition to a correlation between the thermal resistance and the structural quality of an AlN nucleation layer, we found that the microstructural disorder of the SiC surface and the morphological defects of the AlN nucleation layers to be responsible for a substantial thermal resistance. Moreover, in order to decrease the thermal resistance in the GaN/SiC interfacial region, the thickness of the AlN nucleation layer was then reduced to 35 nm, which was shown sufficient to grow AlGaN/GaN heterostructures with high crystalline quality. Finally, with the 35 nm thick high-quality AlN nucleation layer a record low thermal boundary resistance of 1.3 710-8 m2 K/W, measured at an elevated temperature of 160 \ub0C, in a GaN-on-SiC transistor structure was achieved

    Urban construction and demolition waste and landfill failure in Shenzhen, China

    Get PDF
    On December 20, 2015 at 11:40 am a landslide in one of China’s most advanced cities, Shenzhen, killed 73 people and damaged 33 buildings. In the absence of heavy rainfall or earthquakes, the landslide was an unexpected and profound shock to many people. According to China’s Ministry of Land and Resources, the landslide was triggered by the collapse of an enormous pile of construction and demolition waste (CDW). With China’s rapid urbanization, an increasing amount of CDW is being generated, especially in major cities. In total, China produces some 30% of the world’s municipal solid waste and of this about 40% is CDW. To prevent landslides associated with CDW, the volume of waste dumped in landfills should be regulated. More specifically 4-Rs (reduce, reuse, recycle and recover) policies should be implemented more widely and efficiently. Although landfill will continue to be an important disposal option, proper management and careful monitoring of CDW are urgently needed to satisfy pressing safety issues. International collaboration, sharing of knowledge, and use of the latest technologies are needed so that the similar landslides can be prevented in China and elsewhere
    • …
    corecore