63 research outputs found

    Fungal infestation boosts fruit aroma and fruit removal by mammals and birds

    Get PDF
    For four decades, an influential hypothesis has posited that competition for food resources between microbes and vertebrates selects for microbes to alter these resources in ways that make them unpalatable to vertebrates. We chose an understudied cross kingdom interaction to experimentally evaluate the effect of fruit infection by fungi on both vertebrate (mammals and birds) fruit preferences and on ecologically relevant fruit traits (volatile compounds, toughness, etc). Our well-replicated field experiments revealed that, in contrast to previous studies, frugivorous mammals and birds consistently preferred infested over intact fruits. This was concordant with the higher level of attractive volatiles (esters, ethanol) in infested fruits. This investigation suggests that vertebrate frugivores, fleshyfruited plants, and microbes form a tripartite interaction in which each part could interact positively with the other two (e.g. both orange seeds and fungal spores are likely dispersed by mammals). Such a mutualistic view of these complex interactions is opposed to the generalized idea of competition between frugivorous vertebrates and microorganisms. Thus, this research provides a new perspective on the widely accepted plant evolutionary dilemma to make fruits attractive to mutualistic frugivores while unattractive to presumed antagonistic microbes that constrain seed dispersalinfo:eu-repo/semantics/publishedVersio

    Microgeographical, inter-individual, and intra-individual variation in the flower characters of Iberian pear Pyrus bourgaeana (Rosaceae)

    Get PDF
    Flower characteristics have been traditionally considered relatively constant within species. However, there are an increasing number of examples of variation in flower characteristics. In this study, we examined the variation in attracting and rewarding flower characters at several ecological levels in a metapopulation of Pyrus bourgaeana in the Doñana area (SW Spain). We answered the following questions: what are the variances of morphological and nectar characters of flowers? How important are intra-individual and inter-individual variance in flower characters? Are there microgeographical differences in flower characters? And if so, are they consistent between years? In 2008 and 2009, we sampled flowers of 72 trees from five localities. For six flower morphological and two nectar characteristics, we calculated coefficients of variation (CV). The partitioning of total variation among-localities, among-individuals, and within-individuals was estimated. To analyze differences among localities and their consistency between years, we conducted generalized linear mixed models. The CVs of nectar characters were always higher than those of morphological characters. As expected, inter-individual variation was the main source of variation of flower morphology, but nectar characters had significant variation at both intra- and inter-individual levels. For most floral traits, there were no differences among localities. Our study documents that variation is a scale-dependent phenomenon and that it is essential to consider intra- and inter-individual variance when investigating the causes and consequences of variation. It also shows that single year studies of floral characters should be viewed with caution

    Mesopredator Release by an Emergent Superpredator: A Natural Experiment of Predation in a Three Level Guild

    Get PDF
    Chakarov N, Krüger O. Mesopredator Release by an Emergent Superpredator: A Natural Experiment of Predation in a Three Level Guild. PLoS ONE. 2010;5(12): e15229.Background: Intraguild predation (IGP) is widespread but it is often neglected that guilds commonly include many layers of dominance within. This could obscure the effects of IGP making unclear whether the intermediate or the bottom mesopredator will bear higher costs from the emergence of a new top predator. Methodology/Principal Findings: In one of the most extensive datasets of avian IGP, we analyse the impact of recolonization of a superpredator, the eagle owl Bubo bubo on breeding success, territorial dynamics and population densities of two mesopredators, the northern goshawk Accipiter gentilis and its IG prey, the common buzzard Buteo buteo. The data covers more than two decades and encompass three adjacent plots. Eagle owls only recolonized the central plot during the second decade, thereby providing a natural experiment. Both species showed a decrease in standardized reproductive success and an increase in brood failure within 1.5 km of the superpredator. During the second decade, territory dynamics of goshawks was significantly higher in the central plot compared to both other plots. No such pattern existed in buzzards. Goshawk density in the second decade decreased in the central plot, while it increased in both other plots. Buzzard density in the second decade rapidly increased in the north, remained unchanged in the south and increased moderately in the center in a probable case of mesopredator release. Conclusions/Significance: Our study finds support for top-down control on the intermediate mesopredator and both top-down and bottom-up control of the bottom mesopredator. In the face of considerable costs of IGP, both species probably compete to breed in predator-free refugia, which get mostly occupied by the dominant raptor. Therefore for mesopredators the outcome of IGP might depend directly on the number of dominance levels which supersede them

    Prisoners in Their Habitat? Generalist Dispersal by Habitat Specialists: A Case Study in Southern Water Vole (Arvicola sapidus)

    Get PDF
    Habitat specialists inhabiting scarce and scattered habitat patches pose interesting questions related to dispersal such as how specialized terrestrial mammals do to colonize distant patches crossing hostile matrices. We assess dispersal patterns of the southern water vole (Arvicola sapidus), a habitat specialist whose habitat patches are distributed through less than 2% of the study area (overall 600 km2) and whose populations form a dynamic metapopulational network. We predict that individuals will require a high ability to move through the inhospitable matrix in order to avoid genetic and demographic isolations. Genotypes (N = 142) for 10 microsatellites and sequences of the whole mitochondrial Control Region (N = 47) from seven localities revealed a weak but significant genetic structure partially explained by geographic distance. None of the landscape models had a significant effect on genetic structure over that of the Euclidean distance alone and no evidence for efficient barriers to dispersal was found. Contemporary gene flow was not severely limited for A. sapidus as shown by high migration rates estimates (>10%) between non-neighbouring areas. Sex-biased dispersal tests did not support differences in dispersal rates, as shown by similar average axial parent-offspring distances, in close agreement with capture-mark-recapture estimates. As predicted, our results do not support any preferences of the species for specific landscape attributes on their dispersal pathways. Here, we combine field and molecular data to illustrate how a habitat specialist mammal might disperse like a habitat generalist, acquiring specific long-distance dispersal strategies as an adaptation to patchy, naturally fragmented, heterogeneous and unstable habitats
    corecore