376 research outputs found

    Hemin availability induces coordinated DNA methylation and gene expression changes in Porphyromonas gingivalis.

    Get PDF
    Periodontal disease is a chronic inflammatory disease in which the oral pathogen Porphyromonas gingivalis plays an important role. Porphyromonas gingivalis expresses virulence determinants in response to higher hemin concentrations, but the underlying regulatory processes remain unclear. Bacterial DNA methylation has the potential to fulfil this mechanistic role. We characterized the methylome of P. gingivalis, and compared its variation to transcriptome changes in response to hemin availability. Porphyromonas gingivalis W50 was grown in chemostat continuous culture with excess or limited hemin, prior to whole-methylome and transcriptome profiling using Nanopore and Illumina RNA-Seq. DNA methylation was quantified for Dam/Dcm motifs and all-context N6-methyladenine (6mA) and 5-methylcytosine (5mC). Of all 1,992 genes analyzed, 161 and 268 were respectively over- and under-expressed with excess hemin. Notably, we detected differential DNA methylation signatures for the Dam "GATC" motif and both all-context 6mA and 5mC in response to hemin availability. Joint analyses identified a subset of coordinated changes in gene expression, 6mA, and 5mC methylation that target genes involved in lactate utilization and ABC transporters. The results identify altered methylation and expression responses to hemin availability in P. gingivalis, with insights into mechanisms regulating its virulence in periodontal disease. IMPORTANCE DNA methylation has important roles in bacteria, including in the regulation of transcription. Porphyromonas gingivalis, an oral pathogen in periodontitis, exhibits well-established gene expression changes in response to hemin availability. However, the regulatory processes underlying these effects remain unknown. We profiled the novel P. gingivalis epigenome, and assessed epigenetic and transcriptome variation under limited and excess hemin conditions. As expected, multiple gene expression changes were detected in response to limited and excess hemin that reflect health and disease, respectively. Notably, we also detected differential DNA methylation signatures for the Dam "GATC" motif and both all-context 6mA and 5mC in response to hemin. Joint analyses identified coordinated changes in gene expression, 6mA, and 5mC methylation that target genes involved in lactate utilization and ABC transporters. The results identify novel regulatory processes underlying the mechanism of hemin regulated gene expression in P. gingivalis, with phenotypic impacts on its virulence in periodontal disease

    Increased Handpiece Speeds without Air Coolant: Aerosols and Thermal Impact.

    Get PDF
    This study assessed the impact of increased speed of high-speed contra-angle handpieces (HSCAHs) on the aerosolization of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surrogate virus and any concomitant thermal impact on dental pulp. A bacteriophage phantom-head model was used for bioaerosol detection. Crown preparations were performed with an NSK Z95L Contra-Angle 1:5 (HSCAH-A) and a Bien Air Contra-Angle 1:5 Nova Micro Series (HSCAH-B) at speeds of 60,000, 100,000, and 200,000 revolutions per minute (rpm), with no air coolant. Bioaerosol dispersal was measured with Φ6-bacteriophage settle plates, air sampling, and particle counters. Heating of the internal walls of the pulp chambers during crown preparation was assessed with an infrared camera with HSCAH-A and HSCAH-B at 200,000 rpm (water flows ≈15 mL min−1 and ≈30 mL min−1) and an air-turbine control (≈23.5 mL min−1) and correlated with remaining tissue thickness measurements. Minimal bacteriophage was detected on settle or air samples with no notable differences observed between handpieces or speeds (P > 0.05). At all speeds, maximum settled aerosol and average air detection was 1.00 plaque-forming units (pfu) and 0.08 pfu/m3, respectively. Irrespective of water flow rate or handpiece, both maximum temperature (41.5°C) and temperature difference (5.5°C) thresholds for pulpal health were exceeded more frequently with reduced tissue thickness. Moderate and strong negative correlations were observed based on Pearson’s correlation coefficient, between remaining dentine thickness and either differential (r = −0.588) or maximum temperature (r = −0.629) measurements, respectively. Overall, HSCAH-B generated more thermal energy and exceeded more temperature thresholds compared to HSCAH-A. HSCAHs without air coolant operating at speeds of 200,000 rpm did not increase bioaerosolization in the dental surgery. Thermal risk is variable, dependent on handpiece design and remaining dentine thickness

    Dental Mitigation Strategies to Reduce Aerosolization of SARS-CoV-2

    Get PDF
    Limiting infection transmission is central to the safety of all in dentistry, particularly during the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Aerosol-generating procedures (AGPs) are crucial to the practice of dentistry; it is imperative to understand the inherent risks of viral dispersion associated with AGPs and the efficacy of available mitigation strategies. In a dental surgery setting, crown preparation and root canal access procedures were performed with an air turbine or high-speed contra-angle handpiece (HSCAH), with mitigation via rubber dam or high-volume aspiration and a no-mitigation control. A phantom head was used with a 1.5-mL min−1 flow of artificial saliva infected with Φ6-bacteriophage (a surrogate virus for SARS-CoV-2) at ~108 plaque-forming units mL−1, reflecting the upper limits of reported salivary SARS-CoV-2 levels. Bioaerosol dispersal was measured using agar settle plates lawned with the Φ6-bacteriophage host, Pseudomonas syringae. Viral air concentrations were assessed using MicroBio MB2 air sampling and particle quantities using Kanomax 3889 GEOα counters. Compared to an air turbine, the HSCAH reduced settled bioaerosols by 99.72%, 100.00%, and 100.00% for no mitigation, aspiration, and rubber dam, respectively. Bacteriophage concentrations in the air were reduced by 99.98%, 100.00%, and 100.00% with the same mitigations. Use of the HSCAH with high-volume aspiration resulted in no detectable bacteriophage, both on nonsplatter settle plates and in air samples taken 6 to 10 min postprocedure. To our knowledge, this study is the first to report the aerosolization in a dental clinic of active virus as a marker for risk determination. While this model represents a worst-case scenario for possible SARS-CoV-2 dispersal, these data showed that the use of HSCAHs can vastly reduce the risk of viral aerosolization and therefore remove the need for clinic fallow time. Furthermore, our findings indicate that the use of particle analysis alone cannot provide sufficient insight to understand bioaerosol infection risk

    Phase I/II study of the deacetylase inhibitor panobinostat after allogeneic stem cell transplantation in patients with high-risk MDS or AML (PANOBEST trial)

    Get PDF
    Maintenance therapy after allogeneic hematopoietic stem cell transplantation (HSCT) for acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) is conceptually attractive to prevent relapse, but has been hampered by the limited number of suitable anti-leukemic agents. The deacetylase inhibitor (DACi) panobinostat demonstrated moderate anti-leukemic activity in a small subset of patients with advanced AML and high-risk MDS in phase I/II trials.1, 2 It also displays immunomodulatory activity3 that may enhance leukemia-specific cytotoxicity4 and mitigate graft versus host disease (GvHD), but conversely could impair T- and NK cell function.5, 6 We conducted this open-label, multi-center phase I/II trial (NCT01451268) to assess the feasibility and preliminary efficacy of prolonged prophylactic administration of panobinostat after HSCT for AML or MDS. The study protocol was approved by an independent ethics committee and conducted in compliance with the Declaration of Helsinki. All patients provided written informed consent. ..

    Immunomodulatory streptococci that inhibit CXCL8 secretion and NFκB activation are common members of the oral microbiota

    Get PDF
    Introduction. Oral tissues are generally homeostatic despite exposure to many potential inflammatory agents including the resident microbiota. This requires the balancing of inflammation by regulatory mechanisms and/or anti-inflammatory commensal bacteria. Thus, the levels of anti-inflammatory commensal bacteria in resident populations may be critical in maintaining this homeostatic balance. Hypothesis/Gap Statement. The incidence of immunosuppressive streptococci in the oral cavity is not well established. Determining the proportion of these organisms and the mechanisms involved may help to understand host-microbe homeostasis and inform development of probiotics or prebiotics in the maintenance of oral health. Aim. To determine the incidence and potential modes of action of immunosuppressive capacity in resident oral streptococci. Methodology. Supragingival plaque was collected from five healthy participants and supragingival and subgingival plaque from five with gingivitis. Twenty streptococci from each sample were co-cultured with epithelial cells±flagellin or LL-37. CXCL8 secretion was detected by ELISA, induction of cytotoxicity in human epithelial cells by lactate dehydrogenase release and NFκB-activation using a reporter cell line. Bacterial identification was achieved through partial 16S rRNA gene sequencing and next-generation sequencing. Results. CXCL8 secretion was inhibited by 94/300 isolates. Immunosuppressive isolates were detected in supragingival plaque from healthy (4/5) and gingivitis (4/5) samples, and in 2/5 subgingival (gingivitis) plaque samples. Most were Streptococcus mitis/oralis. Seventeen representative immunosuppressive isolates all inhibited NFκB activation. The immunosuppressive mechanism was strain specific, often mediated by ultra-violet light-labile factors, whilst bacterial viability was essential in certain species. Conclusion. Many streptococci isolated from plaque suppressed epithelial cell CXCL8 secretion, via inhibition of NFκB. This phenomenon may play an important role in oral host-microbe homeostasis

    The Search for Invariance: Repeated Positive Testing Serves the Goals of Causal Learning

    Get PDF
    Positive testing is characteristic of exploratory behavior, yet it seems to be at odds with the aim of information seeking. After all, repeated demonstrations of one’s current hypothesis often produce the same evidence and fail to distinguish it from potential alternatives. Research on the development of scientific reasoning and adult rule learning have both documented and attempted to explain this behavior. The current chapter reviews this prior work and introduces a novel theoretical account—the Search for Invariance (SI) hypothesis—which suggests that producing multiple positive examples serves the goals of causal learning. This hypothesis draws on the interventionist framework of causal reasoning, which suggests that causal learners are concerned with the invariance of candidate hypotheses. In a probabilistic and interdependent causal world, our primary goal is to determine whether, and in what contexts, our causal hypotheses provide accurate foundations for inference and intervention—not to disconfirm their alternatives. By recognizing the central role of invariance in causal learning, the phenomenon of positive testing may be reinterpreted as a rational information-seeking strategy

    Bacterial activity in cystic fibrosis lung infections

    Get PDF
    BACKGROUND: Chronic lung infections are the primary cause of morbidity and mortality in Cystic Fibrosis (CF) patients. Recent molecular biological based studies have identified a surprisingly wide range of hitherto unreported bacterial species in the lungs of CF patients. The aim of this study was to determine whether the species present were active and, as such, worthy of further investigation as potential pathogens. METHODS: Terminal Restriction Fragment Length Polymorphism (T-RFLP) profiles were generated from PCR products amplified from 16S rDNA and Reverse Transcription Terminal Restriction Fragment Length Polymorphism (RT-T-RFLP) profiles, a marker of metabolic activity, were generated from PCR products amplified from 16S rRNA, both extracted from the same CF sputum sample. To test the level of activity of these bacteria, T-RFLP profiles were compared to RT-T-RFLP profiles. RESULTS: Samples from 17 individuals were studied. Parallel analyses identified a total of 706 individual T-RF and RT-T-RF bands in this sample set. 323 bands were detected by T-RFLP and 383 bands were detected by RT-T-RFLP (statistically significant; P ≤ 0.001). For the group as a whole, 145 bands were detected in a T-RFLP profile alone, suggesting metabolically inactive bacteria. 205 bands were detected in an RT-T-RFLP profile alone and 178 bands were detected in both, suggesting a significant degree of metabolic activity. Although Pseudomonas aeruginosa was present and active in many patients, a low occurrence of other species traditionally considered to be key CF pathogens was detected. T-RFLP profiles obtained for induced sputum samples provided by healthy individuals without CF formed a separate cluster indicating a low level of similarity to those from CF patients. CONCLUSION: These results indicate that a high proportion of the bacterial species detected in the sputum from all of the CF patients in the study are active. The widespread activity of bacterial species in these samples emphasizes the potential importance of these previously unrecognized species within the CF lung

    Climate change, the Great Barrier Reef and the response of Australians

    Get PDF
    © 2016, Palgrave Macmillan Ltd. All rights reserved. Inspiration, aspirations, attitudes, and perception of threats play a pivotal role in the way that individuals associate themselves with natural environments. These sentiments affect how people connect to natural places, including their behaviours, perceived responsibility, and the management interventions they support. World Heritage Areas hold an important place in the lives of people who visit, aspire to visit, or derive a sense of security and well-being from their existence. Yet, the connection between people and special places is rarely quantified and policymakers find it difficult to incorporate these human dimensions into decision-making processes. Here we describe the personal concern and connection that Australians have with the Great Barrier Reef and discuss how the results may help with its management. We utilize a statistically representative sample of Australian residents (n = 2,002) and show empirically that climate change is perceived to be the biggest threat to the Great Barrier Reef, and that the Great Barrier Reef inspires Australians, promotes pride, and instills a sense of individual identity and collective responsibility to protect it. An increased understanding of the high levels of personal connection to iconic natural resources may help managers to enhance public support for protecting climate-sensitive systems within Australia and around the world

    Dental plaque as a biofilm and a microbial community – implications for health and disease

    Get PDF
    Dental plaque is a structurally- and functionally-organized biofilm. Plaque forms in an ordered way and has a diverse microbial composition that, in health, remains relatively stable over time (microbial homeostasis). The predominant species from diseased sites are different from those found in healthy sites, although the putative pathogens can often be detected in low numbers at normal sites. In dental caries, there is a shift toward community dominance by acidogenic and acid-tolerating species such as mutans streptococci and lactobacilli, although other species with relevant traits may be involved. Strategies to control caries could include inhibition of biofilm development (e.g. prevention of attachment of cariogenic bacteria, manipulation of cell signaling mechanisms, delivery of effective antimicrobials, etc.), or enhancement of the host defenses. Additionally, these more conventional approaches could be augmented by interference with the factors that enable the cariogenic bacteria to escape from the normal homeostatic mechanisms that restrict their growth in plaque and out compete the organisms associated with health. Evidence suggests that regular conditions of low pH in plaque select for mutans streptococci and lactobacilli. Therefore, the suppression of sugar catabolism and acid production by the use of metabolic inhibitors and non-fermentable artificial sweeteners in snacks, or the stimulation of saliva flow, could assist in the maintenance of homeostasis in plaque. Arguments will be presented that an appreciation of ecological principles will enable a more holistic approach to be taken in caries control
    corecore