350 research outputs found
The Drosophila Inhibitor of Apoptosis (IAP) DIAP2 Is Dispensable for Cell Survival, Required for the Innate Immune Response to Gram-negative Bacterial Infection, and Can Be Negatively Regulated by the Reaper/Hid/Grim Family of IAP-binding Apoptosis Inducers
Many inhibitor of apoptosis (IAP) family proteins inhibit apoptosis. IAPs contain N-terminal baculovirus IAP repeat domains and a C-terminal RING ubiquitin ligase domain. Drosophila IAP DIAP1 is essential for the survival of many cells, protecting them from apoptosis by inhibiting active caspases. Apoptosis initiates when proteins such as Reaper, Hid, and Grim bind a surface groove in DIAP1 baculovirus IAP repeat domains via an N-terminal IAP-binding motif. This evolutionarily conserved interaction disrupts DIAP1-caspase interactions, unleashing apoptosis-inducing caspase activity. A second Drosophila IAP, DIAP2, also binds Rpr and Hid and inhibits apoptosis in multiple contexts when overexpressed. However, due to a lack of mutants, little is known about the normal functions of DIAP2. We report the generation of diap2 null mutants. These flies are viable and show no defects in developmental or stress-induced apoptosis. Instead, DIAP2 is required for the innate immune response to Gram-negative bacterial infection. DIAP2 promotes cytoplasmic cleavage and nuclear translocation of the NF-{kappa}B homolog Relish, and this requires the DIAP2 RING domain. Increasing the genetic dose of diap2 results in an increased immune response, whereas expression of Rpr or Hid results in down-regulation of DIAP2 protein levels. Together these observations suggest that DIAP2 can regulate immune signaling in a dose-dependent manner, and this can be regulated by IBM-containing proteins. Therefore, diap2 may identify a point of convergence between apoptosis and immune signaling pathways
The Drosophila caspase Ice is important for many apoptotic cell deaths and for spermatid individualization, a nonapoptotic process
Caspase family proteases play important roles in the regulation of apoptotic cell death. Initiator caspases are activated in response to death stimuli, and they transduce and amplify these signals by cleaving and thereby activating effector caspases. In Drosophila, the initiator caspase Nc (previously Dronc) cleaves and activates two short-prodomain caspases, Dcp-1 and Ice (previously Drice), suggesting these as candidate effectors of Nc killing activity. dcp-1-null mutants are healthy and possess few defects in normally occurring cell death. To explore roles for Ice in cell death, we generated and characterized an Ice null mutant. Animals lacking Ice show a number of defects in cell death, including those that occur during embryonic development, as well as during formation of adult eyes, arista and wings. Ice mutants exhibit subtle defects in the destruction of larval tissues, and do not prevent destruction of salivary glands during metamorphosis. Cells from Ice animals are also markedly resistant to several stresses, including X-irradiation and inhibition of protein synthesis. Mutations in Ice also suppress cell death that is induced by expression of Rpr, Wrinkled (previously Hid) and Grim. These observations demonstrate that Ice plays an important non-redundant role as a cell death effector. Finally, we demonstrate that Ice participates in, but is not absolutely required for, the non-apoptotic process of spermatid differentiation
Thermal photons in QGP and non-ideal effects
We investigate the thermal photon production-rates using one dimensional
boost-invariant second order relativistic hydrodynamics to find proper time
evolution of the energy density and the temperature. The effect of
bulk-viscosity and non-ideal equation of state are taken into account in a
manner consistent with recent lattice QCD estimates. It is shown that the
\textit{non-ideal} gas equation of state i.e behaviour
of the expanding plasma, which is important near the phase-transition point,
can significantly slow down the hydrodynamic expansion and thereby increase the
photon production-rates. Inclusion of the bulk viscosity may also have similar
effect on the hydrodynamic evolution. However the effect of bulk viscosity is
shown to be significantly lower than the \textit{non-ideal} gas equation of
state. We also analyze the interesting phenomenon of bulk viscosity induced
cavitation making the hydrodynamical description invalid. We include the
viscous corrections to the distribution functions while calculating the photon
spectra. It is shown that ignoring the cavitation phenomenon can lead to
erroneous estimation of the photon flux.Comment: 11 pages, 13 figures; accepted for publication in JHE
Hairs on the cosmological horizon
We investigate the possibility of having hairs on the cosmological horizon.
The cosmological horizon shares similar properties of black hole horizons in
the aspect of having hairs on the horizons. For those theories admitting haired
black hole solutions, the nontrivial matter fields may reach and extend beyond
the cosmological horizon. For Q-stars and boson stars, the matter fields cannot
reach the cosmological horizon. The no short hair conjecture keeps valid,
despite the asymptotic behavior (de Sitter or anti-de Sitter) of black hole
solutions. We prove the no scalar hair theorem for anti-de Sitter black holes.
Using the Bekenstein's identity method, we also prove the no scalar hair
theorem for the de Sitter space and de Sitter black holes if the scalar
potential is convex.Comment: Revtex, no figures, 16 page
Mass hierarchy, mass gap and corrections to Newton's law on thick branes with Poincare symmetry
We consider a scalar thick brane configuration arising in a 5D theory of
gravity coupled to a self-interacting scalar field in a Riemannian manifold. We
start from known classical solutions of the corresponding field equations and
elaborate on the physics of the transverse traceless modes of linear
fluctuations of the classical background, which obey a Schroedinger-like
equation. We further consider two special cases in which this equation can be
solved analytically for any massive mode with m^2>0, in contrast with numerical
approaches, allowing us to study in closed form the massive spectrum of
Kaluza-Klein (KK) excitations and to compute the corrections to Newton's law in
the thin brane limit. In the first case we consider a solution with a mass gap
in the spectrum of KK fluctuations with two bound states - the massless 4D
graviton free of tachyonic instabilities and a massive KK excitation - as well
as a tower of continuous massive KK modes which obey a Legendre equation. The
mass gap is defined by the inverse of the brane thickness, allowing us to get
rid of the potentially dangerous multiplicity of arbitrarily light KK modes. It
is shown that due to this lucky circumstance, the solution of the mass
hierarchy problem is much simpler and transparent than in the (thin)
Randall-Sundrum (RS) two-brane configuration. In the second case we present a
smooth version of the RS model with a single massless bound state, which
accounts for the 4D graviton, and a sector of continuous fluctuation modes with
no mass gap, which obey a confluent Heun equation in the Ince limit. (The
latter seems to have physical applications for the first time within braneworld
models). For this solution the mass hierarchy problem is solved as in the
Lykken-Randall model and the model is completely free of naked singularities.Comment: 25 pages in latex, no figures, content changed, corrections to
Newton's law included for smooth version of RS model and an author adde
Identification of Mendelian inconsistencies between SNP and pedigree information of sibs
Background Using SNP genotypes to apply genomic selection in breeding programs is becoming common practice. Tools to edit and check the quality of genotype data are required. Checking for Mendelian inconsistencies makes it possible to identify animals for which pedigree information and genotype information are not in agreement. Methods Straightforward tests to detect Mendelian inconsistencies exist that count the number of opposing homozygous marker (e.g. SNP) genotypes between parent and offspring (PAR-OFF). Here, we develop two tests to identify Mendelian inconsistencies between sibs. The first test counts SNP with opposing homozygous genotypes between sib pairs (SIBCOUNT). The second test compares pedigree and SNP-based relationships (SIBREL). All tests iteratively remove animals based on decreasing numbers of inconsistent parents and offspring or sibs. The PAR-OFF test, followed by either SIB test, was applied to a dataset comprising 2,078 genotyped cows and 211 genotyped sires. Theoretical expectations for distributions of test statistics of all three tests were calculated and compared to empirically derived values. Type I and II error rates were calculated after applying the tests to the edited data, while Mendelian inconsistencies were introduced by permuting pedigree against genotype data for various proportions of animals. Results Both SIB tests identified animal pairs for which pedigree and genomic relationships could be considered as inconsistent by visual inspection of a scatter plot of pairwise pedigree and SNP-based relationships. After removal of 235 animals with the PAR-OFF test, SIBCOUNT (SIBREL) identified 18 (22) additional inconsistent animals. Seventeen animals were identified by both methods. The numbers of incorrectly deleted animals (Type I error), were equally low for both methods, while the numbers of incorrectly non-deleted animals (Type II error), were considerably higher for SIBREL compared to SIBCOUNT. Conclusions Tests to remove Mendelian inconsistencies between sibs should be preceded by a test for parent-offspring inconsistencies. This parent-offspring test should not only consider parent-offspring pairs based on pedigree data, but also those based on SNP information. Both SIB tests could identify pairs of sibs with Mendelian inconsistencies. Based on type I and II error rates, counting opposing homozygotes between sibs (SIBCOUNT) appears slightly more precise than comparing genomic and pedigree relationships (SIBREL) to detect Mendelian inconsistencies between sib
Star forming dwarf galaxies
Star forming dwarf galaxies (SFDGs) have a high gas content and low
metallicities, reminiscent of the basic entities in hierarchical galaxy
formation scenarios. In the young universe they probably also played a major
role in the cosmic reionization. Their abundant presence in the local volume
and their youthful character make them ideal objects for detailed studies of
the initial stellar mass function (IMF), fundamental star formation processes
and its feedback to the interstellar medium. Occasionally we witness SFDGs
involved in extreme starbursts, giving rise to strongly elevated production of
super star clusters and global superwinds, mechanisms yet to be explored in
more detail. SFDGs is the initial state of all dwarf galaxies and the relation
to the environment provides us with a key to how different types of dwarf
galaxies are emerging. In this review we will put the emphasis on the exotic
starburst phase, as it seems less important for present day galaxy evolution
but perhaps fundamental in the initial phase of galaxy formation.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy
Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon,
September 2010, Springer Verlag, in pres
- …