2,151 research outputs found

    A trapped single ion inside a Bose-Einstein condensate

    Full text link
    Improved control of the motional and internal quantum states of ultracold neutral atoms and ions has opened intriguing possibilities for quantum simulation and quantum computation. Many-body effects have been explored with hundreds of thousands of quantum-degenerate neutral atoms and coherent light-matter interfaces have been built. Systems of single or a few trapped ions have been used to demonstrate universal quantum computing algorithms and to detect variations of fundamental constants in precision atomic clocks. Until now, atomic quantum gases and single trapped ions have been treated separately in experiments. Here we investigate whether they can be advantageously combined into one hybrid system, by exploring the immersion of a single trapped ion into a Bose-Einstein condensate of neutral atoms. We demonstrate independent control over the two components within the hybrid system, study the fundamental interaction processes and observe sympathetic cooling of the single ion by the condensate. Our experiment calls for further research into the possibility of using this technique for the continuous cooling of quantum computers. We also anticipate that it will lead to explorations of entanglement in hybrid quantum systems and to fundamental studies of the decoherence of a single, locally controlled impurity particle coupled to a quantum environment

    Cross-protection against European swine influenza viruses in the context of infection immunity against the 2009 pandemic H1N1 virus : studies in the pig model of influenza

    Get PDF
    Pigs are natural hosts for the same influenza virus subtypes as humans and are a valuable model for cross-protection studies with influenza. In this study, we have used the pig model to examine the extent of virological protection between a) the 2009 pandemic H1N1 (pH1N1) virus and three different European H1 swine influenza virus (SIV) lineages, and b) these H1 viruses and a European H3N2 SIV. Pigs were inoculated intranasally with representative strains of each virus lineage with 6- and 17-week intervals between H1 inoculations and between H1 and H3 inoculations, respectively. Virus titers in nasal swabs and/or tissues of the respiratory tract were determined after each inoculation. There was substantial though differing cross-protection between pH1N1 and other H1 viruses, which was directly correlated with the relatedness in the viral hemagglutinin (HA) and neuraminidase (NA) proteins. Cross-protection against H3N2 was almost complete in pigs with immunity against H1N2, but was weak in H1N1/pH1N1-immune pigs. In conclusion, infection with a live, wild type influenza virus may offer substantial cross-lineage protection against viruses of the same HA and/or NA subtype. True heterosubtypic protection, in contrast, appears to be minimal in natural influenza virus hosts. We discuss our findings in the light of the zoonotic and pandemic risks of SIVs

    Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    Get PDF
    The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part A of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many non-linear multipole interactions, among them those associated with the tails (and tails-of-tails) of gravitational waves. Part B of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN) order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary's orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.Comment: 109 pages, 1 figure; this version is an update of the Living Review article originally published in 2002; available on-line at http://www.livingreviews.org

    Hendra Virus Infection Dynamics in Australian Fruit Bats

    Get PDF
    Hendra virus is a recently emerged zoonotic agent in Australia. Since first described in 1994, the virus has spilled from its wildlife reservoir (pteropid fruit bats, or ‘flying foxes’) on multiple occasions causing equine and human fatalities. We undertook a three-year longitudinal study to detect virus in the urine of free-living flying foxes (a putative route of excretion) to investigate Hendra virus infection dynamics. Pooled urine samples collected off plastic sheets placed beneath roosting flying foxes were screened for Hendra virus genome by quantitative RT-PCR, using a set of primers and probe derived from the matrix protein gene. A total of 1672 pooled urine samples from 67 sampling events was collected and tested between 1 July 2008 and 30 June 2011, with 25% of sampling events and 2.5% of urine samples yielding detections. The proportion of positive samples was statistically associated with year and location. The findings indicate that Hendra virus excretion occurs periodically rather than continuously, and in geographically disparate flying fox populations in the state of Queensland. The lack of any detection in the Northern Territory suggests prevalence may vary across the range of flying foxes in Australia. Finally, our findings suggest that flying foxes can excrete virus at any time of year, and that the apparent seasonal clustering of Hendra virus incidents in horses and associated humans (70% have occurred June to October) reflects factors other than the presence of virus. Identification of these factors will strengthen risk minimization strategies for horses and ultimately humans

    Vectors Based on Modified Vaccinia Ankara Expressing Influenza H5N1 Hemagglutinin Induce Substantial Cross-Clade Protective Immunity

    Get PDF
    New highly pathogenic H5N1 influenza viruses are continuing to evolve with a potential threat for an influenza pandemic. So far, the H5N1 influenza viruses have not widely circulated in humans and therefore constitute a high risk for the non immune population. The aim of this study was to evaluate the cross-protective potential of the hemagglutinins of five H5N1 strains of divergent clades using a live attenuated modified vaccinia Ankara (MVA) vector vaccine.The replication-deficient MVA virus was used to express influenza hemagglutinin (HA) proteins. Specifically, recombinant MVA viruses expressing the HA genes of the clade 1 virus A/Vietnam/1203/2004 (VN/1203), the clade 2.1.3 virus A/Indonesia/5/2005 (IN5/05), the clade 2.2 viruses A/turkey/Turkey/1/2005 (TT01/05) and A/chicken/Egypt/3/2006 (CE/06), and the clade 2.3.4 virus A/Anhui/1/2005 (AH1/05) were constructed. These experimental live vaccines were assessed in a lethal mouse model. Mice vaccinated with the VN/1203 hemagglutinin-expressing MVA induced excellent protection against all the above mentioned clades. Also mice vaccinated with the IN5/05 HA expressing MVA induced substantial protection against homologous and heterologous AH1/05 challenge. After vaccination with the CE/06 HA expressing MVA, mice were fully protected against clade 2.2 challenge and partially protected against challenge of other clades. Mice vaccinated with AH1/05 HA expressing MVA vectors were only partially protected against homologous and heterologous challenge. The live vaccines induced substantial amounts of neutralizing antibodies, mainly directed against the homologous challenge virus, and high levels of HA-specific IFN-γ secreting CD4 and CD8 T-cells against epitopes conserved among the H5 clades and subclades.The highest level of cross-protection was induced by the HA derived from the VN/1203 strain, suggesting that pandemic H5 vaccines utilizing MVA vector technology, should be based on the VN/1203 hemagglutinin. Furthermore, the recombinant MVA-HA-VN, as characterized in the present study, would be a promising candidate for such a vaccine

    Haemodynamic effects of plasma-expansion with hyperoncotic albumin in cirrhotic patients with renal failure: a prospective interventional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with advanced cirrhosis of the liver typically display circulatory disturbance. Haemodynamic management may be critical for avoiding and treating functional renal failure in such patients. This study investigated the effects of plasma expansion with hyperoncotic albumin solution and the role of static haemodynamic parameters in predicting volume responsiveness in patients with advanced cirrhosis.</p> <p>Methods</p> <p>Patients with advanced cirrhosis (Child B and C) of the liver receiving albumin substitution because of renal compromise were studied using trans-pulmonary thermodilution. Paired measurements before and after two infusions of 200 ml of 20% albumin per patient were recorded and standard haemodynamic parameters such as central venous pressure (CVP), mean arterial pressure (MAP), systemic vascular resistance index (SVRI), cardiac index (CI) and derived variables were assessed, including global end-diastolic blood volume index (GEDVI), a parameter that reflects central blood volume</p> <p>Results</p> <p>100 measurements in 50 patients (33 m/17 w; age 56 years (± 8); Child-Pugh-score 12 (± 2), serum creatinine 256 μmol (± 150) were analyzed. Baseline values suggested decreased central blood volumes GEDVI = 675 ml/m<sup>2 </sup>(± 138) despite CVP within the normal range (11 mmHg (± 5). After infusion, GEDVI, CI and CVP increased (682 ml/m<sup>2 </sup>(± 128) vs. 744 ml/m<sup>2 </sup>(± 171), p < 0.001; 4.3 L/min/m<sup>2 </sup>(± 1.1) vs. 4.7 L/min/m<sup>2 </sup>(± 1.1), p < 0.001; 12 mmHg (± 6) vs. 14 mmHg (± 6), p < 0.001 respectively) and systemic vascular resistance decreased (1760 dyn s/cm<sup>5</sup>/m<sup>2 </sup>(± 1144) vs. 1490 dyn s/cm<sup>5</sup>/m<sup>2 </sup>(± 837); p < 0.001). Changes in GEDVI, but not CVP, correlated with changes in CI (r<sup>2 </sup>= 0.51; p < 0.001). To assess the value of static haemodynamic parameters at baseline in predicting an increase in CI of 10%, receiver-operating-characteristic curves were constructed. The areas under the curve were 0.766 (p < 0.001) for SVRI, 0.723 (p < 0.001) for CI, 0.652 (p = 0.010) for CVP and 0.616 (p = 0.050) for GEDVI.</p> <p>Conclusion</p> <p>In a substantial proportion of patients with advanced cirrhosis, plasma expansion results in an increase in central blood volume. GEDVI but not CVP behaves as an indicator of cardiac preload, whereas high baseline SVRI is predictive of fluid responsiveness.</p

    Significant Impact of Sequence Variations in the Nucleoprotein on CD8 T Cell-Mediated Cross-Protection against Influenza A Virus Infections

    Get PDF
    Background: Memory CD8 T cells to influenza A viruses are widely detectable in healthy human subjects and broadly cross-reactive for serologically distinct influenza A virus subtypes. However, it is not clear to what extent such pre-existing cellular immunity can provide cross-subtype protection against novel emerging influenza A viruses. Methodology/Principal: Findings We show in the mouse model that naturally occurring sequence variations of the conserved nucleoprotein of the virus significantly impact cross-protection against lethal disease in vivo. When priming and challenge viruses shared identical sequences of the immunodominant, protective NP366/Db epitope, strong cross-subtype protection was observed. However, when they did not share complete sequence identity in this epitope, cross-protection was considerably reduced. Contributions of virus-specific antibodies appeared to be minimal under these circumstances. Detailed analysis revealed that the magnitude of the memory CD8 T cell response triggered by the NP366/Db variants was significantly lower than those triggered by the homologous NP366/Db ligand. It appears that strict specificity of a dominant public TCR to the original NP366/Db ligand may limit the expansion of cross-reactive memory CD8 T cells to the NP366/Db variants. Conclusions/Significance: Pre-existing CD8 T cell immunity may provide substantial cross-protection against heterosubtypic influenza A viruses, provided that the priming and the subsequent challenge viruses share the identical sequences of the immunodominant, protective CTL epitopes

    A Pandemic Influenza H1N1 Live Vaccine Based on Modified Vaccinia Ankara Is Highly Immunogenic and Protects Mice in Active and Passive Immunizations

    Get PDF
    The development of novel influenza vaccines inducing a broad immune response is an important objective. The aim of this study was to evaluate live vaccines which induce both strong humoral and cell-mediated immune responses against the novel human pandemic H1N1 influenza virus, and to show protection in a lethal animal challenge model.For this purpose, the hemagglutinin (HA) and neuraminidase (NA) genes of the influenza A/California/07/2009 (H1N1) strain (CA/07) were inserted into the replication-deficient modified vaccinia Ankara (MVA) virus - a safe poxviral live vector – resulting in MVA-H1-Ca and MVA-N1-Ca vectors. These live vaccines, together with an inactivated whole virus vaccine, were assessed in a lung infection model using immune competent Balb/c mice, and in a lethal challenge model using severe combined immunodeficient (SCID) mice after passive serum transfer from immunized mice. Balb/c mice vaccinated with the MVA-H1-Ca virus or the inactivated vaccine were fully protected from lung infection after challenge with the influenza H1N1 wild-type strain, while the neuraminidase virus MVA-N1-Ca induced only partial protection. The live vaccines were already protective after a single dose and induced substantial amounts of neutralizing antibodies and of interferon-γ-secreting (IFN-γ) CD4- and CD8 T-cells in lungs and spleens. In the lungs, a rapid increase of HA-specific CD4- and CD8 T cells was observed in vaccinated mice shortly after challenge with influenza swine flu virus, which probably contributes to the strong inhibition of pulmonary viral replication observed. In addition, passive transfer of antisera raised in MVA-H1-Ca vaccinated immune-competent mice protected SCID mice from lethal challenge with the CA/07 wild-type virus.The non-replicating MVA-based H1N1 live vaccines induce a broad protective immune response and are promising vaccine candidates for pandemic influenza

    Toward optimal implementation of cancer prevention and control programs in public health: A study protocol on mis-implementation

    Get PDF
    Abstract Background Much of the cancer burden in the USA is preventable, through application of existing knowledge. State-level funders and public health practitioners are in ideal positions to affect programs and policies related to cancer control. Mis-implementation refers to ending effective programs and policies prematurely or continuing ineffective ones. Greater attention to mis-implementation should lead to use of effective interventions and more efficient expenditure of resources, which in the long term, will lead to more positive cancer outcomes. Methods This is a three-phase study that takes a comprehensive approach, leading to the elucidation of tactics for addressing mis-implementation. Phase 1: We assess the extent to which mis-implementation is occurring among state cancer control programs in public health. This initial phase will involve a survey of 800 practitioners representing all states. The programs represented will span the full continuum of cancer control, from primary prevention to survivorship. Phase 2: Using data from phase 1 to identify organizations in which mis-implementation is particularly high or low, the team will conduct eight comparative case studies to get a richer understanding of mis-implementation and to understand contextual differences. These case studies will highlight lessons learned about mis-implementation and identify hypothesized drivers. Phase 3: Agent-based modeling will be used to identify dynamic interactions between individual capacity, organizational capacity, use of evidence, funding, and external factors driving mis-implementation. The team will then translate and disseminate findings from phases 1 to 3 to practitioners and practice-related stakeholders to support the reduction of mis-implementation. Discussion This study is innovative and significant because it will (1) be the first to refine and further develop reliable and valid measures of mis-implementation of public health programs; (2) bring together a strong, transdisciplinary team with significant expertise in practice-based research; (3) use agent-based modeling to address cancer control implementation; and (4) use a participatory, evidence-based, stakeholder-driven approach that will identify key leverage points for addressing mis-implementation among state public health programs. This research is expected to provide replicable computational simulation models that can identify leverage points and public health system dynamics to reduce mis-implementation in cancer control and may be of interest to other health areas
    • …
    corecore