131 research outputs found
Quantum invariants and the graph isomorphism problem
© 2019 authors. Published by the American Physical Society. Three graph invariants are introduced which may be measured from a quantum graph state and form examples of a framework under which other graph invariants can be constructed. Each invariant is based on distinguishing a different number of qubits. This is done by applying different measurements to the qubits to be distinguished. The performance of these invariants is evaluated and compared to classical invariants. We verify that the invariants can distinguish all nonisomorphic graphs with nine or fewer nodes. The invariants have also been applied to "classically hard" strongly regular graphs, successfully distinguishing all strongly regular graphs of up to 29 nodes, and preliminarily to weighted graphs. We have found that, although it is possible to prepare states with a polynomial number of operations, the average number of preparations required to distinguish nonisomorphic graph states scales exponentially with the number of nodes. We have so far been unable to find operators which reliably compare graphs and reduce the required number of preparations to feasible levels
Recommended from our members
Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons
We describe a method used to calibrate the position- and time-dependent response of the MicroBooNE liquid argon time projection chamber anode wires to ionization particle energy loss. The method makes use of crossing cosmic-ray muons to partially correct anode wire signals for multiple effects as a function of time and position, including cross-connected TPC wires, space charge effects, electron attachment to impurities, diffusion, and recombination. The overall energy scale is then determined using fully-contained beam-induced muons originating and stopping in the active region of the detector. Using this method, we obtain an absolute energy scale uncertainty of 2% in data. We use stopping protons to further refine the relation between the measured charge and the energy loss for highly-ionizing particles. This data-driven detector calibration improves both the measurement of total deposited energy and particle identification based on energy loss per unit length as a function of residual range. As an example, the proton selection efficiency is increased by 2% after detector calibration
Recommended from our members
Reconstruction and measurement of (100) MeV energy electromagnetic activity from π0 arrow γγ decays in the MicroBooNE LArTPC
We present results on the reconstruction of electromagnetic (EM) activity from photons produced in charged current νμ interactions with final state π0s. We employ a fully-automated reconstruction chain capable of identifying EM showers of (100) MeV energy, relying on a combination of traditional reconstruction techniques together with novel machine-learning approaches. These studies demonstrate good energy resolution, and good agreement between data and simulation, relying on the reconstructed invariant π0 mass and other photon distributions for validation. The reconstruction techniques developed are applied to a selection of νμ + Ar → μ + π0 + X candidate events to demonstrate the potential for calorimetric separation of photons from electrons and reconstruction of π0 kinematics
Systematic Reviews in Educational Research: Methodology, Perspectives and Application
This chapter explores the processes of reviewing literature as a research method. The logic of the family of research approaches called systematic review is analysed and the variation in techniques used in the different approaches explored using examples from existing reviews. The key distinctions between aggregative and configurative approaches are illustrated and the chapter signposts further reading on key issues in the systematic review process
Olfactory receptors on the maxillary palps of small ermine moth larvae: evolutionary history of benzaldehyde sensitivity
In lepidopterous larvae the maxillary palps contain a large portion of the sensory equipment of the insect. Yet, knowledge about the sensitivity of these cells is limited. In this paper a morphological, behavioral, and electrophysiological investigation of the maxillary palps of Yponomeuta cagnagellus (Lepidoptera: Yponomeutidae) is presented. In addition to thermoreceptors, CO2 receptors, and gustatory receptors, evidence is reported for the existence of two groups of receptor cells sensitive to plant volatiles. Cells that are mainly sensitive to (E)-2-hexenal and hexanal or to (Z)-3-hexen-1-ol and 1-hexanol were found. Interestingly, a high sensitivity for benzaldehyde was also found. This compound is not known to be present in Euonymus europaeus, the host plant of the monophagous Yponomeuta cagnagellus, but it is a prominent compound in Rosaceae, the presumed hosts of the ancestors of Y. cagnagellus. To elucidate the evolutionary history of this sensitivity, and its possible role in host shifts, feeding responses of three Yponomeuta species to benzaldehyde were investigated. The results confirm the hypothesis that the sensitivity to benzaldehyde evolved during the ancestral shift from Celastraceae to Rosaceae and can be considered an evolutionary relict, retained in the recently backshifted Celastraceae-specialist Y. cagnagellus
Multidifferential cross section measurements of νμ -argon quasielasticlike reactions with the MicroBooNE detector
We report on a flux-integrated multidifferential measurement of charged-current muon neutrino scattering on argon with one muon and one proton in the final state using the Booster Neutrino Beam and MicroBooNE detector at Fermi National Accelerator Laboratory. The data are studied as a function of various kinematic imbalance variables and of a neutrino energy estimator, and are compared to a number of event generator predictions. We find that the measured cross sections in different phase-space regions are sensitive to nuclear effects. Our results provide precision data to test and improve the neutrino-nucleus interaction models needed to perform high-accuracy oscillation analyses. Specific regions of phase space are identified where further model refinements are most needed
First Double-Differential Measurement of Kinematic Imbalance in Neutrino Interactions with the MicroBooNE Detector
We report the first measurement of flux-integrated double-differential quasielasticlike neutrino-argon cross sections, which have been made using the Booster Neutrino Beam and the MicroBooNE detector at Fermi National Accelerator Laboratory. The data are presented as a function of kinematic imbalance variables which are sensitive to nuclear ground-state distributions and hadronic reinteraction processes. We find that the measured cross sections in different phase-space regions are sensitive to different nuclear effects. Therefore, they enable the impact of specific nuclear effects on the neutrino-nucleus interaction to be isolated more completely than was possible using previous single-differential cross section measurements. Our results provide precision data to help test and improve neutrino-nucleus interaction models. They further support ongoing neutrino-oscillation studies by establishing phase-space regions where precise reaction modeling has already been achieved
First demonstration of O (1 ns) timing resolution in the MicroBooNE liquid argon time projection chamber
MicroBooNE is a neutrino experiment located in the Booster Neutrino Beamline (BNB) at Fermilab, which collected data from 2015 to 2021. MicroBooNE's liquid argon time projection chamber (LArTPC) is accompanied by a photon detection system consisting of 32 photomultiplier tubes used to measure the argon scintillation light and determine the timing of neutrino interactions. Analysis techniques combining light signals and reconstructed tracks are applied to achieve a neutrino interaction time resolution of O(1 ns). The result obtained allows MicroBooNE to access the nanosecond beam structure of the BNB for the first time. The timing resolution achieved will enable significant enhancement of cosmic background rejection for all neutrino analyses. Furthermore, the ns timing resolution opens new avenues to search for long-lived-particles such as heavy neutral leptons in MicroBooNE, as well as in future large LArTPC experiments, namely the SBN program and DUNE
The anterolateral complex of the knee: results from the International ALC Consensus Group Meeting
The structure and function of the anterolateral complex (ALC) of the knee has created much controversy since the 're-discovery' of the anterolateral ligament (ALL) and its proposed role in aiding control of anterolateral rotatory laxity in the anterior cruciate ligament (ACL) injured knee. A group of surgeons and researchers prominent in the field gathered to produce consensus as to the anatomy and biomechanical properties of the ALC. The evidence for and against utilisation of ALC reconstruction was also discussed, generating a number of consensus statements by following a modified Delphi process. Key points include that the ALC consists of the superficial and deep aspects of the iliotibial tract with its Kaplan fibre attachments on the distal femur, along with the ALL, a capsular structure within the anterolateral capsule. A number of structures attach to the area of the Segond fracture including the capsule-osseous layer of the iliotibial band, the ALL and the anterior arm of the short head of biceps, and hence it is not clear which is responsible for this lesion. The ALC functions to provide anterolateral rotatory stability as a secondary stabiliser to the ACL. Whilst biomechanical studies have shown that these structures play an important role in controlling stability at the time of ACL reconstruction, the optimal surgical procedure has not yet been defined clinically. Concern remains that these procedures may cause constraint of motion, yet no clinical studies have demonstrated an increased risk of osteoarthritis development. Furthermore, clinical evidence is currently lacking to support clear indications for lateral extra-articular procedures as an augmentation to ACL reconstruction.
The resulting statements and scientific rationale aim to inform readers on the most current thinking and identify areas of needed basic science and clinical research to help improve patient outcomes following ACL injury and subsequent reconstruction.
Level of evidence V
- …