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We report the first measurement of flux-integrated double-differential quasielasticlike neutrino-argon
cross sections, which have been made using the Booster Neutrino Beam and the MicroBooNE detector at
Fermi National Accelerator Laboratory. The data are presented as a function of kinematic imbalance
variables which are sensitive to nuclear ground-state distributions and hadronic reinteraction processes. We
find that the measured cross sections in different phase-space regions are sensitive to different nuclear
effects. Therefore, they enable the impact of specific nuclear effects on the neutrino-nucleus interaction to
be isolated more completely than was possible using previous single-differential cross section measure-
ments. Our results provide precision data to help test and improve neutrino-nucleus interaction models.
They further support ongoing neutrino-oscillation studies by establishing phase-space regions where
precise reaction modeling has already been achieved.

DOI: 10.1103/PhysRevLett.131.101802

Neutrino-oscillation measurements aim to extract neu-
trino mixing angles, mass differences, and the charge-parity
violating phase, and to search for new physics beyond the
standard model [1–3]. The analysis of such measurements
traditionally relies on detailed comparisons of measured
and theoretically expected neutrino interaction rates in the
corresponding detectors. Therefore, a precise understand-
ing of neutrino-nucleus interactions is required to fully ex-
ploit the discovery potential of current and next-generation
experiments.
With a growing number of neutrino-oscillation experi-

ments employing liquid argon time projection chamber
(LArTPC) neutrino detectors [4–9], high-accuracy model-
ing of neutrino-argon interactions is becoming of para-
mount importance [10–12]. The overarching goal of these
efforts is both to achieve few-percent-level modeling of
neutrino-argon interaction rates and to provide a detailed
understanding of the final-state kinematics of emitted

particles that are used to reconstruct the energies of the
interacting neutrinos [13,14].
This Letter reports the first measurement of flux-

integrated double-differential cross sections for muon-
neutrino-argon (νμ-Ar) charged-current (CC) quasielastic
(QE)-like scattering reactions as a function of transverse
kinematic imbalance variables. Building upon a previous
analysis of neutrino-argon cross sections with a similar
signal event topology [15], we focus on reactions where the
neutrino removes a single intact proton from the nucleus
without producing any additional detected particles. The
results reported here are obtained using the Booster
Neutrino Beam (BNB) and the MicroBooNE detector at
Fermi National Accelerator Laboratory with an exposure of
6.79 × 1020 protons on target.
Transverse kinematic imbalance variables were previ-

ously shown to be sensitive to the modeling of the nuclear
ground-state distribution and to nuclear medium effects,
such as hadronic final-state interactions (FSI) [16–21]. By
measuring the components of the muon and proton
momenta perpendicular to the neutrino direction, p⃗μ

T and
p⃗p
T respectively, we construct the transverse missing

momentum, δp⃗T ¼ p⃗μ
T þ p⃗p

T , and its angular orientation
with respect to p⃗μ

T , δαT ¼ arccos ½ð−p⃗μ
T · δp⃗TÞ=ðpμ

T δpTÞ�.
Owing to the isotropic nature of Fermi motion, δαT is
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expected to be uniformly distributed in the absence of
any FSI. In the presence of FSI, the proton momentum
is generally reduced and the δαT distribution becomes
enhanced toward 180°. Similarly, the shape of the δpT
distribution encapsulates information related to Fermi
motion and is further smeared due to FSI and multinucleon
effects. Given the sensitivity of δαT to FSI and of δpT to
both FSI and Fermi motion, a simultaneous measurement
of these two observables can help to disentangle the
individual impact of each nuclear effect on the neutrino-
nucleus interaction. Similarly, the muon-proton momentum
imbalance components transverse and parallel to the trans-
verse lepton momentum, δpT;x¼δpT sinδαT and δpT;y ¼
δpT cos δαT , provide further handles on Fermi motion and
FSI processes, respectively.
The active volume of the MicroBooNE LArTPC con-

tains 85 tonnes of argon [22]. It is exposed to the BNB
neutrino energy spectrum that peaks around 0.8 GeV and
extends to about 2 GeV.
Neutrinos are detected by measuring the charged par-

ticles produced following their interactions with argon
nuclei in the LArTPC active volume. These charged
particles travel through the liquid argon, producing both
scintillation light and trails of ionization electrons. In the
presence of a uniform 273 V=cm electric field, the ioniza-
tion electrons drift through the argon and are detected by a
system of three anode wire planes that are perpendicular to
the field. The scintillation light is measured by photo-
multiplier tubes (PMTs). Events are recorded if the PMT
signals are in time coincidence with the beam arrival time.
Trigger hardware and software selection cuts reject back-
ground events, mostly from cosmic muons, providing
enriched data samples in which a neutrino interaction
occurs in ≈15% of selected beam spills [23].
The PANDORA reconstruction package [24] is used to

form individual tracks from the measured ionization signals
in the enriched data samples. Particle identification and
momentum determination are performed using the mea-
sured track energy-deposition profile and track length
[25,26].
Candidate muon-proton pairs are identified by requiring

exactly two tracklike objects and no showerlike objects
based on a track-score variable from PANDORA [27,28]. The
discriminant described in Ref. [29] is used to distinguish
muon and proton candidates. We further apply quality
cuts to avoid misreconstructed tracks. Details are given
in Ref. [30].
To reduce contributions from cosmic tracks and to

minimize bin-migration effects, the event selection con-
siders only muon and proton track pairs that are fully
contained within a fiducial volume of 10 cm from the edge
of the detector active volume.
The signal definition used in this analysis includes all

νμ-Ar scattering events with a final-state muon with mo-
mentum 0.1 < pμ < 1.2 GeV=c and exactly one final-state

proton with 0.3 < pp < 1 GeV=c. Events with final-state
neutral pions at any momentum are excluded. Signal events
may contain additional protons with momentum less than
300 MeV=c or greater than 1 GeV=c, neutrons at any
momentum, and charged pions with momentum lower than
70 MeV=c. We refer to the signal events as CC1p0π.
Owing to the requirement for a single proton and no pions
in the final state, the CC1p0π topology of interest is
dominated by QE events. Yet, more complex interactions,
namely meson exchange currents (MEC), resonance inter-
actions (RES), and deep inelastic scattering events (DIS),
can still produce the CC1p0π experimental signature.
Events that do not satisfy the CC1p0π signal definition
at a truth level are treated as background. Such events are
referred to as non-CC1p0π and are dominated by inter-
actions with two protons in the momentum range of
interest, where the second proton was not reconstructed.
This topology is studied in Ref. [31], where a good data-
simulation agreement is observed.
After the application of the event selection, we retain

9051 data events that satisfy all criteria. Event distributions
for all the aforementioned variables of interest and details
on the CC1p0π event selection, along with the corres-
ponding systematic uncertainties, can be found in the
Supplemental Material [32] and in Ref. [30].
The flux-averaged differential event rate as a function of

a given variable x in bin i is obtained by

dR
dxi

¼ Ni − Bi

T ·Φν · Δi
ð1Þ

whereNi and Bi are the number of measured events and the
expected background events, respectively. T is the number
of target argon nuclei in the fiducial volume of interest. Φν

corresponds to the total BNB flux and, finally, Δi corre-
sponds to the ith bin width or area for the single- and
double-differential results, respectively.
We report the extracted cross sections for the measured

interaction using the Wiener singular value decomposition
(Wiener-SVD) unfolding technique as a function of un-
folded kinematic variables [34]. More details on the un-
folding procedure can be found in Ref. [30]. The unfolding
machinery returns the unfolded differential cross section
and the corresponding uncertainties. Apart from the un-
folded result, an additional smearing matrix AC is obtained,
which accounts for the regularization and bias of the mea-
surement. When a comparison to the unfolded data is
performed, the corresponding AC matrices must be applied
to the true cross section predictions. See the Supplemental
Material [32] for the data release, the unfolded covariance
matrices, and the additional matrices AC.
As in previous MicroBooNE measurements [15,35–37],

the full Monte Carlo (MC) simulation used in the unfolding
procedure consists of a combination of simulated neutrino
interactions overlaid on beam-off background events. This
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provides an accurate description of the dominant
cosmic backgrounds pertinent to surface detectors using
real data. Neutrino interactions are simulated using the
GENIE v3.0.6 event generator [38,39]. The CC QE and CC
MEC neutrino interaction models have been tuned to T2K
νμ-12C CC0π data [40,41]. Predictions for more complex
interactions, such as resonances, remain unaltered. No
additional MC constraints are applied. We refer to the
corresponding prediction as G18. The latter configura-
tion is used to simulate both the CC1p0π signal and
non-CC1p0π background events. GENIE generates all
final-state particles associated with the primary neutrino
interaction and propagates them through the nucleus,
accounting for FSI. The particle propagation outside
the nucleus is simulated using GEANT4 [42], with the
MicroBooNE detector response modeled using the
LArSoft framework [43,44]. Based on this simulation, we
estimate that our efficiency for selecting fully contained
CC1p0π events is ≈10%, with a purity of ≈70%.
The total covariance matrix E ¼ Estat þ Esyst used in the

Wiener-SVD filter includes the statistical and systematic
uncertainties associated with our measurement. Estat is a
diagonal covariance matrix including the statistical uncer-
tainties, and Esyst is a covariance matrix incorporating the
total systematic uncertainties. More details on the sources
of systematic uncertainty and the construction of these
matrices can be found in Ref. [30]. These matrices include
uncertainties on the integrated cross section due to the
neutrino flux prediction (7.3%) [45], neutrino interaction
cross section modeling (6%) [38,39,41], detector response
modeling (4.9%) [46], beam exposure (2.3%), statistics
(1.5%), number of scattering targets (1.15%), reinteractions
(1%) [47], and out-of-cryostat interaction modeling (0.2%).
The full fractional uncertainty on the integrated total cross
section sums to 11%.
Across the results reported in this Letter, statistical

uncertainties are shown by the inner error bars on the final
results. The systematic uncertainties were decomposed into

shape- and normalization-related sources following the
procedure outlined in Ref. [48]. The cross-term uncertain-
ties were incorporated in the normalization part. The outer
error bars on the reported cross sections correspond to
statistical and shape uncertainties added in quadrature. The
normalization uncertainties are presented with the gray
band at the bottom of our results.
The single- and double-differential results as a function

of δpT are presented in Fig. 1. They are compared with
G18 and the theory-driven GIBUU 2021 (GIBUU) event
generator. Additional comparisons to the corresponding
event generators when FSI are turned off are also included
(G18 no-FSI and GIBUU no-FSI). G18 uses the local Fermi gas
(LFG) model of the nuclear ground state [49] and the
Nieves CCQE scattering prescription [50] with Coulomb
corrections for the outgoing muon [51] and random phase
approximation (RPA) corrections [52]. It also uses the
Nieves MEC model [53], the KLN-BS resonance (RES)
[54–57], and Berger-Sehgal coherent (COH) [58] scattering
models. Furthermore, the hA2018 FSI model [59] and the
MicroBooNE-specific tuning of model parameters [41] are
utilized. GIBUU uses somewhat similar models, but, unlike
GENIE, they are implemented in a coherent way by solving
the Boltzmann-Uehling-Uhlenbeck transport equation [60].
The simulation includes the LFG model [49], a standard
CCQE expression [61], an empirical MEC model and a
dedicated spin-dependent resonance amplitude calculation
following the MAID analysis [60]. The DIS model is from
PYTHIA [62]. The FSI treatment is different as the hadrons
propagate through the residual nucleus in a nuclear
potential which is consistent with the initial state.
The single-differential results as a function of δpT

using all the events that satisfy our selection are shown
in Fig. 1(a). The χ2=bins data comparison for each gene-
rator shown on all the results takes into account the total
covariance matrix, including the off diagonal elements.
Theoretical uncertainties on the models themselves are not
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FIG. 1. The flux-integrated (a) single- and (b),(c) double- (in δαT bins) differential CC1p0π cross sections as a function of the
transverse missing momentum δpT . Inner and outer error bars show the statistical and total (statistical and shape systematic) uncertainty
at the 1σ, or 68%, confidence level. The gray band shows the separate normalization systematic uncertainty. Colored lines show the
results of theoretical cross section calculations with (solid line) and without (dashed line) FSI based on the GENIE (blue) and GIBUU

(orange) event generators.
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included. The peak height of both generator predictions
is ≈30% higher when FSI effects are turned off. Yet, all
distributions illustrate a transverse missing momentum tail
that extends beyond the Fermi momentum (≈250 MeV=c)
whether FSI effects are incorporated or not. The double-
differential result using events with δαT < 45° shown in
Fig. 1(b) is dominated by events that primarily occupy
the region up to the Fermi momentum and do not exhibit a
high-momentum tail. The double-differential results using
events with 135° < δαT < 180° are shown in Fig. 1(c)
and illustrate high transverse missing momentum up to
1 GeV=c. The prediction without FSI effects is strongly
disfavored. The region around 0.3 GeV=c in Fig. 1(c)
shows a noticeable difference between the G18 and GIBUU

predictions. This behavior could be driven by the different
approaches of simulating the MEC and FSI effects between
the two event generators, as can be seen in the inter-
action breakdown of the relevant cross sections in the
Supplemental Material [32]. Therefore, the high δpT region
is an appealing candidate for neutrino experiments to
benchmark and tune the FSI modeling in event generators.
The same single- and double-differential cross section
comparisons as a function of δpT using different FSI
variations are included in the Supplemental Material [32].
Extracted cross sections as a function of δαT are shown

in Fig. 2. Here we perform comparisons to the recently
added theory-driven GENIE v3.0.6 G21_11b_00_000 configura-
tion (G21 hN) [63]. This configuration uses the SuSAv2
model for CCQE and CCMEC interactions [64], and the
hN2018 FSI model [65]. The modeling choices for RES,
DIS, and COH interactions are the same as for G18. We
investigated the effect of the FSI-modeling choice by
comparing the G21 hN results to the ones obtained with
G21 hA, where the hA2018 FSI model was used instead, and
to G21 G4 with the recently coupled GEANT4 FSI framework
[66]. The prediction where the FSI effects have been turned
off (G21 no-FSI) is also included for comparison. The impact
of different QE modeling options as a function of the same
variables is investigated in the Supplemental Material [32].

The single-differential results as a function of δαT using
all the events that satisfy our selection are shown in
Fig. 2(a). The prediction without FSI shows a uniform
behavior as a function of δαT and is disfavored by the data.
The addition of FSI effects leads to a ≈30% asymmetry
around δαT ¼ 90°. The three FSI models used here for
comparison yield a consistent behavior. The double-
differential result shown in Fig. 2(b) using events with
δpT < 0.2 GeV=c illustrates a uniform distribution indica-
tive of the suppressed FSI impact in that part of the phase
space. The G21 no-FSI prediction is higher than the other FSI
predictions. The difference comes from the generation of
multiple particles above detection threshold due to reinter-
action effects in the FSI-rich samples. Such events do not
satisfy the signal definition and therefore introduce the
difference in the absolute scale. The double-differential
results using events with δpT > 0.4 GeV=c are shown in
Fig. 2(c) and illustrate the presence of strong FSI effects
with a significantly enhanced asymmetry around 90°.
Thus, the high δαT region is highly informative for the
FSI-modeling performance in event generators. See the
Supplemental Material [32] for details on the interaction
breakdown of the aforementioned results and Ref. [30] for
further double-differential results.
Finally, Fig. 3 shows the single- and double-differential

results as a function of δpT;x. The result shows the
comparison between the nominal G18 model using the
LFG and predictions using the same G18 interaction
modeling but different nuclear ground-state model options
available in the GENIE event generator, namely the Bodek-
Ritchie Fermi Gas (RFG) [67] and an effective spectral
function (EffSF) [68]. Furthermore, the prediction without
RPA effects is shown for comparison (no-RPA) [52]. The
FSI impact on the same results is investigated in the
Supplemental Material [32].
The single-differential result [Fig. 3(a)] illustrates a fairly

broad symmetric distribution centered around 0 GeV=c.
The double-differential result for events where δpT;y <
−0.15 GeV=c [Fig. 3(b)] illustrates an even broader dis-
tribution, as can be seen in the widths (σData) of Gaussian
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level. The gray band shows the separate normalization systematic uncertainty. Colored lines show the results of theoretical cross section
calculations with a number of FSI-modeling choices based on the GENIE event generator.
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fits on the data distributions. Conversely, the double-
differential result for events with jδpT;yj < 0.15 GeV=c
[Fig. 3(c)] shows a much narrower peak which strongly
depends on the choice of the underlying model and the
inclusion or absence of nuclear effects such as RPA. The
LFG and no-RPA predictions are favored in both parts of
the phase space. Both the RFG and EffSF predictions
illustrate a poor performance in the double-differential
measurements and particularly in the QE-dominated
jδpT;yj < 0.15 GeV=c region. The FSI-modeling impact
on the same δpT;x cross sections is presented in the
Supplemental Material [32]. The latter further contains
details on the interaction breakdown of various generator
predictions for the results reported here, and further single-
and double-differential results can be found in Ref. [30].
In summary, we report the first measurement of muon

neutrino double-differential cross sections on argon as a
function of kinematic imbalance variables for event topol-
ogies with a single muon and a single proton detected in the
final state. We identify parts of the phase space where the
Fermi motion can be largely disentangled from FSI and
multinucleon effects. This disentanglement provides lever-
age to improve separate parts of the complicated neutrino
interaction models that affect single-differential distribu-
tions in similar ways. Therefore, the reported results pave
the path to substantially reducing cross section systematic
uncertainties which will enable precision measurements of
fundamental neutrino properties.
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FIG. 3. The flux-integrated (a) single- and (b),(c) double- (in δpT;y bins) differential CC1p0π cross sections as a function of the
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