2,651 research outputs found
Scatteract: Automated extraction of data from scatter plots
Charts are an excellent way to convey patterns and trends in data, but they
do not facilitate further modeling of the data or close inspection of
individual data points. We present a fully automated system for extracting the
numerical values of data points from images of scatter plots. We use deep
learning techniques to identify the key components of the chart, and optical
character recognition together with robust regression to map from pixels to the
coordinate system of the chart. We focus on scatter plots with linear scales,
which already have several interesting challenges. Previous work has done fully
automatic extraction for other types of charts, but to our knowledge this is
the first approach that is fully automatic for scatter plots. Our method
performs well, achieving successful data extraction on 89% of the plots in our
test set.Comment: Submitted to ECML PKDD 2017 proceedings, 16 page
Molecular cloning, expression analysis and assignment of the porcine tumor necrosis factor superfamily member 10 gene (TNFSF10) to SSC13q34 -> q36 by fluorescence in situ hybridization and radiation hybrid mapping
We have cloned the complete coding region of the porcine TNFSF10 gene. The porcine TNFSF10 cDNA has an ORF of 870 nucleotides and shares 85 % identity with human TNFSF10, and 75% and 72% identity with rat and mouse Tnfsf10 coding sequences, respectively. The deduced porcine TNFSF10 protein consists of 289 amino acids with the calculated molecular mass of 33.5 kDa and a predicted pI of 8.15. The amino acid sequence similarities correspond to 86, 72 and 70% when compared with human, rat and mouse sequences, respectively. Nor-them blot analysis detected TNFSF10-specific transcripts (similar to 1.7 kb) in various organs of a 10-week-old pig, suggesting ubiquitous expression. Real-time RT-PCR studies of various organs from fetal (days 73 and 98) and postnatal stages (two weeks, eight months) demonstrated developmental and tissue-specific regulation of TNFSF10 mRNA abundance. The chromosomal location of the porcine TNFSF10 gene was determined by FISH of a specific BAC clone to metaphase chromosomes. This TNFSF10 BAC clone has been assigned to SSC13q34 -> q36. Additionally, the localization of the TNFSF10 gene was verified by RH mapping on the porcine IMpRH panel. Copyright (c) 2005S. KargerAG, Basel
Inherited epidermolysis bullosa
Inherited epidermolysis bullosa (EB) encompasses a number of disorders characterized by recurrent blister formation as the result of structural fragility within the skin and selected other tissues. All types and subtypes of EB are rare; the overall incidence and prevalence of the disease within the United States is approximately 19 per one million live births and 8 per one million population, respectively. Clinical manifestations range widely, from localized blistering of the hands and feet to generalized blistering of the skin and oral cavity, and injury to many internal organs. Each EB subtype is known to arise from mutations within the genes encoding for several different proteins, each of which is intimately involved in the maintenance of keratinocyte structural stability or adhesion of the keratinocyte to the underlying dermis. EB is best diagnosed and subclassified by the collective findings obtained via detailed personal and family history, in concert with the results of immunofluorescence antigenic mapping, transmission electron microscopy, and in some cases, by DNA analysis. Optimal patient management requires a multidisciplinary approach, and revolves around the protection of susceptible tissues against trauma, use of sophisticated wound care dressings, aggressive nutritional support, and early medical or surgical interventions to correct whenever possible the extracutaneous complications. Prognosis varies considerably and is based on both EB subtype and the overall health of the patient
Electric Field Effects on Graphene Materials
Understanding the effect of electric fields on the physical and chemical
properties of two-dimensional (2D) nanostructures is instrumental in the design
of novel electronic and optoelectronic devices. Several of those properties are
characterized in terms of the dielectric constant which play an important role
on capacitance, conductivity, screening, dielectric losses and refractive
index. Here we review our recent theoretical studies using density functional
calculations including van der Waals interactions on two types of layered
materials of similar two-dimensional molecular geometry but remarkably
different electronic structures, that is, graphene and molybdenum disulphide
(MoS). We focus on such two-dimensional crystals because of they
complementary physical and chemical properties, and the appealing interest to
incorporate them in the next generation of electronic and optoelectronic
devices. We predict that the effective dielectric constant () of
few-layer graphene and MoS is tunable by external electric fields (). We show that at low fields ( V/\AA)
assumes a nearly constant value 4 for both materials, but increases at
higher fields to values that depend on the layer thickness. The thicker the
structure the stronger is the modulation of with the electric
field. Increasing of the external field perpendicular to the layer surface
above a critical value can drive the systems to an unstable state where the
layers are weakly coupled and can be easily separated. The observed dependence
of on the external field is due to charge polarization driven by
the bias, which show several similar characteristics despite of the layer
considered.Comment: Invited book chapter on Exotic Properties of Carbon Nanomatter:
Advances in Physics and Chemistry, Springer Series on Carbon Materials.
Editors: Mihai V. Putz and Ottorino Ori (11 pages, 4 figures, 30 references
Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity
© 2018 The Authors. Published by PLOS. This is an open access article available under a Creative Commons licence.
The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1371/journal.pone.0191416© 2018 Maley et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Objective The present study aimed to compare a range of cooling methods possibly utilised by occupational workers, focusing on their effect on body temperature, perception and manual dexterity. Methods Ten male participants completed eight trials involving 30 min of seated rest followed by 30 min of cooling or control of no cooling (CON) (34C, 58% relative humidity). The cooling methods utilised were: ice cooling vest (CV0), phase change cooling vest melting at 14C (CV14), evaporative cooling vest (CVEV), arm immersion in 10C water (AI), portable water-perfused suit (WPS), heliox inhalation (HE) and ice slushy ingestion (SL). Immediately before and after cooling, participants were assessed for fine (Purdue pegboard task) and gross (grip and pinch strength) manual dexterity. Rectal and skin temperature, as well as thermal sensation and comfort, were monitored throughout. Results Compared with CON, SL was the only method to reduce rectal temperature (P = 0.012). All externally applied cooling methods reduced skin temperature (P0.05). Conclusion The present study observed that ice ingestion or ice applied to the skin produced the greatest effect on rectal and skin temperature, respectively. AI should not be utilised if workers require subsequent fine manual dexterity. These results will help inform future studies investigating appropriate pre-cooling methods for the occupational worker.This project is financially supported by the US Government through the Technical Support Working Group within the Combating Terrorism Technical Support Office.Published versio
Pre-cooling for endurance exercise performance in the heat: a systematic review.
PMCID: PMC3568721The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1741-7015/10/166.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Endurance exercise capacity diminishes under hot environmental conditions. Time to exhaustion can be increased by lowering body temperature prior to exercise (pre-cooling). This systematic literature review synthesizes the current findings of the effects of pre-cooling on endurance exercise performance, providing guidance for clinical practice and further research
Supermembrane interaction with dynamical D=4 N=1 supergravity. Superfield Lagrangian description and spacetime equations of motion
We obtain the complete set of equations of motion for the interacting system
of supermembrane and dynamical D=4 N = 1 supergravity by varying its complete
superfield action and writing the resulting superfield equations in the special
gauge where the supermembrane Goldstone field is set to zero. We solve the
equations for auxiliary fields and discuss the effect of dynamical generation
of cosmological constant in the Einstein equation of interacting system and its
renormalization due to some regular contributions from supermembrane. These two
effects (discussed in late 70th and 80th, in the bosonic perspective and in the
supergravity literature) result in that, generically, the cosmological constant
has different values in the branches of the spacetime separated by the
supermembrane worldvolume.Comment: 23 pages, no figures. V2 two references added, 24 page
Evaluation of a Bayesian inference network for ligand-based virtual screening
Background
Bayesian inference networks enable the computation of the probability that an event will occur. They have been used previously to rank textual documents in order of decreasing relevance to a user-defined query. Here, we modify the approach to enable a Bayesian inference network to be used for chemical similarity searching, where a database is ranked in order of decreasing probability of bioactivity.
Results
Bayesian inference networks were implemented using two different types of network and four different types of belief function. Experiments with the MDDR and WOMBAT databases show that a Bayesian inference network can be used to provide effective ligand-based screening, especially when the active molecules being sought have a high degree of structural homogeneity; in such cases, the network substantially out-performs a conventional, Tanimoto-based similarity searching system. However, the effectiveness of the network is much less when structurally heterogeneous sets of actives are being sought.
Conclusion
A Bayesian inference network provides an interesting alternative to existing tools for ligand-based virtual screening
Size and shape constancy in consumer virtual reality
With the increase in popularity of consumer virtual reality headsets, for research and other applications, it is important to understand the accuracy of 3D perception in VR. We investigated the perceptual accuracy of near-field virtual distances using a size and shape constancy task, in two commercially available devices. Participants wore either the HTC Vive or the Oculus Rift and adjusted the size of a virtual stimulus to match the geometric qualities (size and depth) of a physical stimulus they were able to refer to haptically. The judgments participants made allowed for an indirect measure of their perception of the egocentric, virtual distance to the stimuli. The data show under-constancy and are consistent with research from carefully calibrated psychophysical techniques. There was no difference in the degree of constancy found in the two headsets. We conclude that consumer virtual reality headsets provide a sufficiently high degree of accuracy in distance perception, to allow them to be used confidently in future experimental vision science, and other research applications in psychology
- …