254 research outputs found

    Defecting or not defecting: how to "read" human behavior during cooperative games by EEG measurements

    Get PDF
    Understanding the neural mechanisms responsible for human social interactions is difficult, since the brain activities of two or more individuals have to be examined simultaneously and correlated with the observed social patterns. We introduce the concept of hyper-brain network, a connectivity pattern representing at once the information flow among the cortical regions of a single brain as well as the relations among the areas of two distinct brains. Graph analysis of hyper-brain networks constructed from the EEG scanning of 26 couples of individuals playing the Iterated Prisoner's Dilemma reveals the possibility to predict non-cooperative interactions during the decision-making phase. The hyper-brain networks of two-defector couples have significantly less inter-brain links and overall higher modularity - i.e. the tendency to form two separate subgraphs - than couples playing cooperative or tit-for-tat strategies. The decision to defect can be "read" in advance by evaluating the changes of connectivity pattern in the hyper-brain network

    The statistical neuroanatomy of frontal networks in the macaque

    Get PDF
    We were interested in gaining insight into the functional properties of frontal networks based upon their anatomical inputs. We took a neuroinformatics approach, carrying out maximum likelihood hierarchical cluster analysis on 25 frontal cortical areas based upon their anatomical connections, with 68 input areas representing exterosensory, chemosensory, motor, limbic, and other frontal inputs. The analysis revealed a set of statistically robust clusters. We used these clusters to divide the frontal areas into 5 groups, including ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral, and caudal-orbital groups. Each of these groups was defined by a unique set of inputs. This organization provides insight into the differential roles of each group of areas and suggests a gradient by which orbital and ventral-medial areas may be responsible for decision-making processes based on emotion and primary reinforcers, and lateral frontal areas are more involved in integrating affective and rational information into a common framework

    Determining the neurotransmitter concentration profile at active synapses

    Get PDF
    Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission

    How We Know It Hurts: Item Analysis of Written Narratives Reveals Distinct Neural Responses to Others' Physical Pain and Emotional Suffering

    Get PDF
    People are often called upon to witness, and to empathize with, the pain and suffering of others. In the current study, we directly compared neural responses to others' physical pain and emotional suffering by presenting participants (n = 41) with 96 verbal stories, each describing a protagonist's physical and/or emotional experience, ranging from neutral to extremely negative. A separate group of participants rated “how much physical pain”, and “how much emotional suffering” the protagonist experienced in each story, as well as how “vivid and movie-like” the story was. Although ratings of Pain, Suffering and Vividness were positively correlated with each other across stories, item-analyses revealed that each scale was correlated with activity in distinct brain regions. Even within regions of the “Shared Pain network” identified using a separate data set, responses to others' physical pain and emotional suffering were distinct. More broadly, item analyses with continuous predictors provided a high-powered method for identifying brain regions associated with specific aspects of complex stimuli – like verbal descriptions of physical and emotional events.United States. Air Force Office of Scientific Research (Office of Naval Research, grant number N000140910845

    Confidence and psychosis: a neuro-computational account of contingency learning disruption by NMDA blockade.

    Get PDF
    A state of pathological uncertainty about environmental regularities might represent a key step in the pathway to psychotic illness. Early psychosis can be investigated in healthy volunteers under ketamine, an NMDA receptor antagonist. Here, we explored the effects of ketamine on contingency learning using a placebo-controlled, double-blind, crossover design. During functional magnetic resonance imaging, participants performed an instrumental learning task, in which cue-outcome contingencies were probabilistic and reversed between blocks. Bayesian model comparison indicated that in such an unstable environment, reinforcement learning parameters are downregulated depending on confidence level, an adaptive mechanism that was specifically disrupted by ketamine administration. Drug effects were underpinned by altered neural activity in a fronto-parietal network, which reflected the confidence-based shift to exploitation of learned contingencies. Our findings suggest that an early characteristic of psychosis lies in a persistent doubt that undermines the stabilization of behavioral policy resulting in a failure to exploit regularities in the environment.FV was supported by the Groupe Pasteur Mutualité. RG was supported by the Fondation pour la Recherche Médicale and the Fondation Bettencourt Schueller. SP is supported by a Marie Curie Intra-European fellowship (FP7-PEOPLE-2012-IEF). AF was supported by National Health and Medical Research Council grants (IDs : 1050504 and 1066779) and an Australian Research Council Future Fellowship (ID: FT130100589). This work was supported by the Wellcome Trust and the Bernard Wolfe Health Neuroscience Fund.This is the final version of the article. It first appeared from the Nature Publishing Group via http://dx.doi.org/10.1038/mp.2015.7

    Conditioned task-set competition:Neural mechanisms of emotional interference in depression

    Get PDF
    Depression has been associated with increased response times at the incongruent, neutral, and negative-word trials of the classical and emotional Stroop tasks (Epp et al., 2012). Response time slow-down effects at incongruent and negative-word trials of the Stroop tasks were reported to correlate with depressive severity, indicating strong relevance of the effects to the symptomatology. The current study proposes a novel integrative computational model of neural mechanisms of both the classical and the emotional Stroop effects, drawing on the previous prominent theoretical explanations of performance at the classical Stroop task (Cohen et al., 1990; Herd et al., 2006), and in addition suggesting that negative emotional words represent conditioned stimuli for future negative outcomes. The model is shown to explain the classical Stroop effect and the slow (between-trial) emotional Stroop effect with biologically-plausible mechanisms, providing an advantage over the previous theoretical accounts (Matthews and Harley, 1996; Wyble et al., 2008). Simulation results suggested a candidate mechanism responsible for the pattern of depressive performance at the classical and the emotional Stroop tasks. Hyperactivity of the amygdala, together with increased inhibitory influence of the amygdala over dopaminergic neurotransmission, could be at the origin of the performance deficits

    How a co-actor’s task affects monitoring of own errors: evidence from a social event-related potential study

    Get PDF
    Efficient flexible behavior requires continuous monitoring of performance for possible deviations from the intended goal of an action. This also holds for joint action. When jointly performing a task, one needs to not only know the other’s goals and intentions but also generate behavioral adjustments that are dependent on the other person’s task. Previous studies have shown that in joint action people not only represent their own task but also the task of their co-actor. The current study investigated whether these so-called shared representations affect error monitoring as reflected in the response-locked error-related negativity (Ne/ERN) following own errors. Sixteen pairs of participants performed a social go/no-go task, while EEG and behavioral data were obtained. Responses were compatible or incompatible relative to the go/no-go action of the co-actor. Erroneous responses on no-go stimuli were examined. The results demonstrated increased Ne/ERN amplitudes and longer reaction times following errors on compatible compared to incompatible no-go stimuli. Thus, Ne/ERNs were larger after errors on trials that did not require a response from the co-actor either compared to errors on trials that did require a response from the co-actor. As the task of the other person is the only difference between these two types of errors, these findings show that people also represent their co-actor’s task during error monitoring in joint action. An extension of existing models on performance monitoring in individual action is put forward to explain the current findings in joint action. Importantly, we propose that inclusion of a co-actor’s task in performance monitoring may facilitate adaptive behavior in social interactions enabling fast anticipatory and corrective actions

    Neural Circuitry of Emotional and Cognitive Conflict Revealed through Facial Expressions

    Get PDF
    Neural systems underlying conflict processing have been well studied in the cognitive realm, but the extent to which these overlap with those underlying emotional conflict processing remains unclear. A novel adaptation of the AX Continuous Performance Task (AX-CPT), a stimulus-response incompatibility paradigm, was examined that permits close comparison of emotional and cognitive conflict conditions, through the use of affectively-valenced facial expressions as the response modality.Brain activity was monitored with functional magnetic resonance imaging (fMRI) during performance of the emotional AX-CPT. Emotional conflict was manipulated on a trial-by-trial basis, by requiring contextually pre-cued facial expressions to emotional probe stimuli (IAPS images) that were either affectively compatible (low-conflict) or incompatible (high-conflict). The emotion condition was contrasted against a matched cognitive condition that was identical in all respects, except that probe stimuli were emotionally neutral. Components of the brain cognitive control network, including dorsal anterior cingulate cortex (ACC) and lateral prefrontal cortex (PFC), showed conflict-related activation increases in both conditions, but with higher activity during emotion conditions. In contrast, emotion conflict effects were not found in regions associated with affective processing, such as rostral ACC.These activation patterns provide evidence for a domain-general neural system that is active for both emotional and cognitive conflict processing. In line with previous behavioural evidence, greatest activity in these brain regions occurred when both emotional and cognitive influences additively combined to produce increased interference
    corecore