541 research outputs found
QED can explain the non-thermal emission from SGRs and AXPs : Variability
Owing to effects arising from quantum electrodynamics (QED),
magnetohydrodynamical fast modes of sufficient strength will break down to form
electron-positron pairs while traversing the magnetospheres of strongly
magnetised neutron stars. The bulk of the energy of the fast mode fuels the
development of an electron-positron fireball. However, a small, but potentially
observable, fraction of the energy ( ergs) can generate a
non-thermal distribution of electrons and positrons far from the star. This
paper examines the cooling and radiative output of these particles. Small-scale
waves may produce only the non-thermal emission. The properties of this
non-thermal emission in the absence of a fireball match those of the quiescent,
non-thermal radiation recently observed non-thermal emission from several
anomalous X-ray pulsars and soft-gamma repeaters. Initial estimates of the
emission as a function of angle indicate that the non-thermal emission should
be beamed and therefore one would expect this emission to be pulsed as well.
According to this model the pulsation of the non-thermal emission should be
between 90 and 180 degrees out of phase from the thermal emission from the
stellar surface.Comment: 7 pages, 5 figures, to appear in the proceedings of the conference
"Isolated Neutron Stars: from the Interior to the Surface" (April 2006,
London), eds. D. Page, R. Turolla, & S. Zane, Astrophysics & Space Scienc
Urinary active transforming growth factor ß in feline chronic kidney disease
The cytokine transforming growth factor beta 1 (TGF-β1) has been widely implicated in the development and progression of renal fibrosis in chronic kidney disease (CKD) in humans and in experimental models. The aims of this study were to assess the association between urinary active TGF-β1 and (a) development of CKD in a cross-sectional study, (b) deterioration of renal function over 1 year in a longitudinal study, and (c) renal histopathological parameters in cats. A human active TGF-β1 ELISA was validated for use in feline urine.
Cross-sectional analysis revealed no significant difference in urinary active TGF-β1:creatinine ratio (aTGF-β1:UCr) between groups with differing renal function. Longitudinally, non-azotaemic cats that developed CKD demonstrated a significant (P = 0.028) increase in aTGF-β1:UCr approximately 6 months before the development of azotaemia, which remained elevated (P = 0.046) at diagnosis (approximately 12 months prior, 8.4 pg/mg; approximately 6 months prior, 22.2 pg/mg; at CKD diagnosis, 24.6 pg/mg). In the histopathology study, aTGF-β1:UCr was significantly higher in cats with moderate (P = 0.02) and diffuse (P = 0.005) renal fibrosis than in cats without fibrosis. Cats with moderate renal inflammation had significantly higher urinary active aTGF-β1 concentrations than cats with mild (P = 0.035) or no inflammatory change (P = 0.004). The parameter aTGF-β1:UCr was independently associated with Log urine protein:creatinine ratio in a multivariable analysis of clinicopathological parameters and interstitial fibrosis score in a multivariable analysis of histopathological features. These results suggest that urinary aTGF-β1 reflects the severity of renal pathology. Increases in urinary aTGF-β1 followed longitudinally in individual cats may indicate the development of CKD
Ferromagnetism in Oriented Graphite Samples
We have studied the magnetization of various, well characterized samples of
highly oriented pyrolitic graphite (HOPG), Kish graphite and natural graphite
to investigate the recently reported ferromagnetic-like signal and its possible
relation to ferromagnetic impurities. The magnetization results obtained for
HOPG samples for applied fields parallel to the graphene layers - to minimize
the diamagnetic background - show no correlation with the magnetic impurity
concentration. Our overall results suggest an intrinsic origin for the
ferromagnetism found in graphite. We discuss possible origins of the
ferromagnetic signal.Comment: 11 figure
Measurement of the Branching Fraction for B->eta' K and Search for B->eta'pi+
We report measurements for two-body charmless B decays with an eta' meson in
the final state. Using 11.1X10^6 BBbar pairs collected with the Belle detector,
we find BF(B^+ ->eta'K^+)=(79^+12_-11 +-9)x10^-6 and BF(B^0 ->
eta'K^0)=(55^+19_-16 +-8)x10^-6, where the first and second errors are
statistical and systematic, respectively. No signal is observed in the mode B^+
-> eta' pi^+, and we set a 90% confidence level upper limit of BF(B^+->
eta'pi^+) eta'K^+- decays is
investigated and a limit at 90% confidence level of -0.20<Acp<0.32 is obtained.Comment: Submitted to Physics Letters
Determination of |Vcb| using the semileptonic decay \bar{B}^0 --> D^{*+}e^-\bar{\nu}
We present a measurement of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
element |Vcb| using a 10.2 fb^{-1} data sample recorded at the \Upsilon(4S)
resonance with the Belle detector at the KEKB asymmetric e^+e^- storage ring.
By extrapolating the differential decay width of the \bar{B}^0 -->
D^{*+}e^-\bar{\nu} decay to the kinematic limit at which the D^{*+} is at rest
with respect to the \bar{B}^0, we extract the product of |Vcb| with the
normalization of the decay form factor F(1), |Vcb |F(1)=
(3.54+/-0.19+/-0.18)x10^{-2}, where the first error is statistical and the
second is systematic. A value of |Vcb| = (3.88+/-0.21+/-0.20+/-0.19)x10^{-2} is
obtained using a theoretical calculation of F(1), where the third error is due
to the theoretical uncertainty in the value of F(1). The branching fraction
B(\bar{B}^0 --> D^{*+}e^-\bar{\nu}) is measured to be
(4.59+/-0.23+/-0.40)x10^{-2}.Comment: 20 pages, 6 figures, elsart.cls, submitted to PL
A Measurement of the Branching Fraction for the Inclusive B --> X(s) gamma Decays with the Belle Detector
We have measured the branching fraction of the inclusive radiative B meson
decay B --> X(s) gamma to be Br(B->X(s)gamma)=(3.36 +/- 0.53(stat) +/-
0.42(sys) +0.50-0.54(th)) x 10^{-4}.
The result is based on a sample of 6.07 x 10^6 BBbar events collected at the
Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric e^+e^-
storage ring.Comment: 14 pages, 6 Postsript figures, uses elsart.cl
The Public Repository of Xenografts enables discovery and randomized phase II-like trials in mice
More than 90% of drugs with preclinical activity fail in human trials, largely due to insufficient efficacy. We hypothesized that adequately powered trials of patient-derived xenografts (PDX) in mice could efficiently define therapeutic activity across heterogeneous tumors. To address this hypothesis, we established a large, publicly available repository of well-characterized leukemia and lymphoma PDXs that undergo orthotopic engraftment, called the Public Repository of Xenografts (PRoXe). PRoXe includes all de-identified information relevant to the primary specimens and the PDXs derived from them. Using this repository, we demonstrate that large studies of acute leukemia PDXs that mimic human randomized clinical trials can characterize drug efficacy and generate transcriptional, functional, and proteomic biomarkers in both treatment-naive and relapsed/refractory disease
Molecular basis of microhomology-mediated end-joining by purified full-length Polθ
DNA polymerase θ (Polθ) is a unique polymerase-helicase fusion protein that promotes microhomology-mediated end-joining (MMEJ) of DNA double-strand breaks (DSBs). How full-length human Polθ performs MMEJ at the molecular level remains unknown. Using a biochemical approach, we find that the helicase is essential for Polθ MMEJ of long ssDNA overhangs which model resected DSBs. Remarkably, Polθ MMEJ of ssDNA overhangs requires polymerase-helicase attachment, but not the disordered central domain, and occurs independently of helicase ATPase activity. Using single-particle microscopy and biophysical methods, we find that polymerase-helicase attachment promotes multimeric gel-like Polθ complexes that facilitate DNA accumulation, DNA synapsis, and MMEJ. We further find that the central domain regulates Polθ multimerization and governs its DNA substrate requirements for MMEJ. These studies identify unexpected functions for the helicase and central domain and demonstrate the importance of polymerase-helicase tethering in MMEJ and the structural organization of Polθ
- …