112 research outputs found

    Challenges in Complex Systems Science

    Get PDF
    FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships, understanding the relationship between simple and comprehensive models with appropriate choices of variables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially in systems that can reflect on and change their behaviour in response to predictions, and systems whose apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These challenges are part of the FuturICT agenda

    A terminal assessment of stages theory : introducing a dynamic states approach to entrepreneurship

    Get PDF
    Stages of Growth models were the most frequent theoretical approach to understanding entrepreneurial business growth from 1962 to 2006; they built on the growth imperative and developmental models of that time. An analysis of the universe of such models (N=104) published in the management literature shows no consensus on basic constructs of the approach, nor is there any empirical confirmations of stages theory. However, by changing two propositions of the stages models, a new dynamic states approach is derived. The dynamic states approach has far greater explanatory power than its precursor, and is compatible with leading edge research in entrepreneurship

    Wnt signalling and cancer stem cells

    Get PDF
    [Abstract] Intracellular signalling mediated by secreted Wnt proteins is essential for the establishment of cell fates and proper tissue patterning during embryo development and for the regulation of tissue homeostasis and stem cell function in adult tissues. Aberrant activation of Wnt signalling pathways has been directly linked to the genesis of different tumours. Here, the components and molecular mechanisms implicated in the transduction of Wnt signal, along with important results supporting a central role for this signalling pathway in stem cell function regulation and carcinogenesis will be briefly reviewed.Ministerio de Ciencia e Innovación; SAF2008-0060

    Optical Light Curves of Supernovae

    Full text link
    Photometry is the most easily acquired information about supernovae. The light curves constructed from regular imaging provide signatures not only for the energy input, the radiation escape, the local environment and the progenitor stars, but also for the intervening dust. They are the main tool for the use of supernovae as distance indicators through the determination of the luminosity. The light curve of SN 1987A still is the richest and longest observed example for a core-collapse supernova. Despite the peculiar nature of this object, as explosion of a blue supergiant, it displayed all the characteristics of Type II supernovae. The light curves of Type Ib/c supernovae are more homogeneous, but still display the signatures of explosions in massive stars, among them early interaction with their circumstellar material. Wrinkles in the near-uniform appearance of thermonuclear (Type Ia) supernovae have emerged during the past decade. Subtle differences have been observed especially at near-infrared wavelengths. Interestingly, the light curve shapes appear to correlate with a variety of other characteristics of these supernovae. The construction of bolometric light curves provides the most direct link to theoretical predictions and can yield sorely needed constraints for the models. First steps in this direction have been already made.Comment: To be published in:"Supernovae and Gamma Ray Bursters", Lecture Notes in Physics (http://link.springer.de/series/lnpp

    Are ecosystem services stabilized by differences among species? A test using crop pollination

    No full text
    Biological diversity could enhance ecosystem service provision by increasing the mean level of services provided, and/or by providing more consistent (stable) services over space and time. Ecological theory predicts that when an ecosystem service is provided by many species, it will be stabilized against disturbance by a variety of ‘stabilizing mechanisms.’ However, few studies have investigated whether stabilizing mechanisms occur in real landscapes affected by human disturbance. We used two datasets on crop pollination by wild native bees to screen for and differentiate among three stabilizing mechanisms: density compensation (negative co-variance among species' abundances); response diversity (differential response to environmental variables among species); and cross-scale resilience (response to the same environmental variable at different scales by different species). In both datasets, we found response diversity and cross-scale resilience, but not density compensation. We conclude that stabilizing mechanisms may contribute to the stability of pollination services in our study areas, emphasizing the insurance value of seemingly ‘redundant’ species. Furthermore, the absence of density compensation that we found at the landscape scale contrasts with findings of previous small-scale experimental and modelling work, suggesting that we should not assume that density compensation will stabilize ecosystem services in real landscapes

    Dividing Agents on the Grid for Large Scale Simulation

    No full text

    Simulation for Collaborative Competition Based on Multi-Agent

    No full text

    Supplementary Material for: Assessment with Unenhanced MRI Techniques of Renal Morphology and Hemodynamic Changes during Acute Kidney Injury and Chronic Kidney Disease in Mice

    No full text
    <b><i>Background/Aims:</i></b> Changes in renal oxygenation and perfusion have been identified as common pathways to the development and progression of renal disease. Recently, the sensitivity of hemodynamic response imaging (HRI) was demonstrated; this is a functional magnetic resonance imaging (MRI) method combined with transient hypercapnia and hyperoxia for the evaluation of renal perfusion and vascular reactivity. The aim of this study was to utilize HRI for the noninvasive evaluation of changes in renal hemodynamics and morphology during acute, chronic and acute-on-chronic renal failures. <b><i>Methods:</i></b> Renal-HRI maps and true fast imaging with steady-state precession (True-FISP) images were used to evaluate renal perfusion, morphology and corticomedullary differentiation (CMD). MR images were acquired on two mouse models of kidney injury: adenine-induced chronic kidney disease (CKD) and rhabdomyolysis-induced acute kidney injury (AKI). Serum urea was measured from these mice in order to determine renal function. <b><i>Results:</i></b> Renal-HRI maps revealed a blunted response to hypercapnia and hyperoxia with evolving kidney dysfunction in both models, reflecting hampered renal vascular reactivity and perfusion. True-FISP images showed a high sensitivity to renal morphological changes, with different patterns characterizing each model. Calculated data obtained from HRI and True-FISP during the evolution of renal failure and upon recovery, with and without protective intervention, closely correlated with the degree of renal impairment. <b><i>Conclusions:</i></b> This study suggests the potential combined usage of two noninvasive MRI methods, HRI and True-FISP, for the assessment of renal dysfunction without the potential risk associated with contrast-agents administration. HRI may also serve as a research tool in experimental settings, revealing the hemodynamic changes associated with kidney dysfunction
    • …
    corecore