2,338 research outputs found
Consumption processes and positively homogeneous projection properties
We constructively prove the existence of time-discrete consumption processes
for stochastic money accounts that fulfill a pre-specified positively
homogeneous projection property (PHPP) and let the account always be positive
and exactly zero at the end. One possible example is consumption rates forming
a martingale under the above restrictions. For finite spaces, it is shown that
any strictly positive consumption strategy with restrictions as above possesses
at least one corresponding PHPP and could be constructed from it. We also
consider numeric examples under time-discrete and -continuous account
processes, cases with infinite time horizons and applications to income
drawdown and bonus theory.Comment: 24 pages, 2 figure
Recommended from our members
Croconaine-Based Polymer Particles as Contrast Agents for Photoacoustic Imaging
In the development and optimization of imaging methods, photoacoustic imaging (PAI) has become a powerful tool for preclinical biomedical diagnosis and detection of cancer. PAI probes can improve contrast and help identify pathogenic tissue. Such contrast agents must meet several requirements: they need to be biocompatible, and absorb strongly in the near-infrared (NIR) range, while relaxing the photoexcited state thermally and not radiatively. In this work, polymer nanoparticles are produced with croconaine as a monomer unit. Small molecular croconaine dyes are known to act as efficient pigments, which do not show photoluminescence. Here, for the first time croconaine copolymer nanoparticles are produced from croconic acid and a range of aromatic diamines. Following a dispersion polymerization protocol, this approach yields monodisperse particles of adjustable size. All synthesized polymers exhibit broad absorption within the NIR spectrum and therefore represent suitable candidates as contrast agents for PAI. The optical properties of these polymer particles are discussed with respect to the relation between particle size and outstanding photoacoustic performance. Biocompatibility of the polymer particles is demonstrated in cell viability experiments. © The Authors. Published by Wiley-VCH Gmb
Non-transitive maps in phase synchronization
Concepts from the Ergodic Theory are used to describe the existence of
non-transitive maps in attractors of phase synchronous chaotic systems. It is
shown that for a class of phase-coherent systems, e.g. the sinusoidally forced
Chua's circuit and two coupled R{\"o}ssler oscillators, phase synchronization
implies that such maps exist. These ideas are also extended to other coupled
chaotic systems. In addition, a phase for a chaotic attractor is defined from
the tangent vector of the flow. Finally, it is discussed how these maps can be
used to real time detection of phase synchronization in experimental systems
Non-perturbative Propagators, Running Coupling and Dynamical Quark Mass of Landau gauge QCD
The coupled system of renormalized Dyson-Schwinger equations for the quark,
gluon and ghost propagators of Landau gauge QCD is solved within truncation
schemes. These employ bare as well as non-perturbative ansaetze for the
vertices such that the running coupling as well as the quark mass function are
independent of the renormalization point. The one-loop anomalous dimensions of
all propagators are reproduced. Dynamical chiral symmetry breaking is found,
the dynamically generated quark mass agrees well with phenomenological values
and corresponding results from lattice calculations. The effects of unquenching
the system are small. In particular the infrared behavior of the ghost and
gluon dressing functions found in previous studies is almost unchanged as long
as the number of light flavors is smaller than four.Comment: 34 pages, 10 figures, version to be published by Phys. Rev.
Infrared exponents and the strong-coupling limit in lattice Landau gauge
We study the gluon and ghost propagators of lattice Landau gauge in the
strong-coupling limit beta=0 in pure SU(2) lattice gauge theory to find
evidence of the conformal infrared behavior of these propagators as predicted
by a variety of functional continuum methods for asymptotically small momenta
. In the strong-coupling limit, this same
behavior is obtained for the larger values of a^2q^2 (in units of the lattice
spacing a), where it is otherwise swamped by the gauge field dynamics.
Deviations for a^2q^2 < 1 are well parameterized by a transverse gluon mass
. Perhaps unexpectedly, these deviations are thus no finite-volume
effect but persist in the infinite-volume limit. They furthermore depend on the
definition of gauge fields on the lattice, while the asymptotic conformal
behavior does not. We also comment on a misinterpretation of our results by
Cucchieri and Mendes in Phys. Rev. D81 (2010) 016005.Comment: 17 pages, 12 figures. Revised version (mainly sections I and II);
references and comments on subsequent work on the subject added
On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory
We study the nature of the confinement phase transition in d=3+1 dimensions
in various non-abelian gauge theories with the approach put forward in [1]. We
compute an order-parameter potential associated with the Polyakov loop from the
knowledge of full 2-point correlation functions. For SU(N) with N=3,...,12 and
Sp(2) we find a first-order phase transition in agreement with general
expectations. Moreover our study suggests that the phase transition in E(7)
Yang-Mills theory also is of first order. We find that it is weaker than for
SU(N). We show that this can be understood in terms of the eigenvalue
distribution of the order parameter potential close to the phase transition.Comment: 15 page
Roles of the color antisymmetric ghost propagator in the infrared QCD
The results of Coulomb gauge and Landau gauge lattice QCD simulation do not
agree completely with continuum theory. There are indications that the ghost
propagator in the infrared region is not purely color diagonal as in high
energy region. After presenting lattice simulation of configurations produced
with Kogut-Susskind fermion (MILC collaboration) and those with domain wall
fermion (RBC/UKQCD collaboration), I investigate in triple gluon vertex and the
ghost-gluon-ghost vertex how the square of the color antisymmetric ghost
contributes. Then the effect of the vertex correction to the gluon propagator
and the ghost propagator is investigated.
Recent Dyson-Schwinger equation analysis suggests the ghost dressing function
finite and no infrared enhancement or . But the ghost
propagator renormalized by the loop containing a product of color antisymmetric
ghost is expected to behave as with
with , if the fixed point
scenario is valid. I interpret the solution should contain a
vertex correction. The infrared exponent of our lattice Landau gauge gluon
propagator of the RBC/UKQCD is and that of MILC is about
-0.7.
The implication for the Kugo-Ojima color confinement criterion, QCD effective
coupling and the Slavnov identity are given.Comment: 13 pages 10 figures, references added and revised. version to be
published in Few-Body System
Strong-coupling study of the Gribov ambiguity in lattice Landau gauge
We study the strong-coupling limit beta=0 of lattice SU(2) Landau gauge
Yang-Mills theory. In this limit the lattice spacing is infinite, and thus all
momenta in physical units are infinitesimally small. Hence, the infrared
behavior can be assessed at sufficiently large lattice momenta. Our results
show that at the lattice volumes used here, the Gribov ambiguity has an
enormous effect on the ghost propagator in all dimensions. This underlines the
severity of the Gribov problem and calls for refined studies also at finite
beta. In turn, the gluon propagator only mildly depends on the Gribov
ambiguity.Comment: 14 pages, 22 figures; minor changes, matches version to appear in
Eur. Phys. J.
- …