3,522 research outputs found

    Nitrogen dynamics in the shallow groundwater of a riparian wetland zone of the Garonne, SW France: nitrate inputs, bacterial densities, organic matter supply and denitrification measurements

    Get PDF
    This study highlights the role of interactions between surface and sub-surface water of the riparian zone of a large river (the Garonne, SW France). Information is given about the role of surface water in supplying Dissolved Organic Carbon (DOC ) to the riparian zone for nitrate removal processes. The densities of bacteria (up to 3.3106 cell m L-1) in groundwater are strongly conditioned by the water moving during flood events. Total bacterial densities in groundwater were related to surface water bacterial densities. In sediment, total bacteria are attached mainly to fine particles (90 % in the fraction < 1 mm). Spatial variations in organic carbon and nitrate content in groundwater at the site studied are correlated with exchanges between the groundwater and the river, from the upstream to the downstream part of the meander. Total bacterial densities, nitrate and decressing organic carbon concentrations follow the same pattern. These results suggest that, in this kind of riparian wetland, nitrate from alluvial groundwater influenced by agricultural practices may be denitrified by bacteria in the presence of organic carbon from river surface water

    A standardised method for measuring in situ denitrification in shallow aquifers: numerical validation and measurements in riparian wetlands

    Get PDF
    A tracer test to examine in situ denitrification in shallow groundwater by a piezometer with a packer system used bromide as a tracer of dilution and acetylene (10%) to block the denitrification process at the nitrous oxide stage. During the test, dissolved oxygen, nitrate (NO3-), bromide (Br-), nitrous oxide (N2O) and dissolved organic carbon (DOC) were measured. To calibrate the experimental method, comparison with numerical simulations of the groundwater transfer were carried out, taking into account the environmental characteristics. The method was tested by measurements undertaken in different environmental conditions (geology, land use and hydrology) in two riparian wetlands. Denitrification rates measured by this method ranged from 5.7 10-6 g N-NO3-L-1 h-1 to 1.97 10-3 g N-NO3-L-1 h-1 The method is applicable in shallow aquifers with a permeability from 10-2 to 10-4m s-1

    3D SIMULATION OF A 500KG UO2 MELT IN A COLD CRUCIBLE INDUCTION FURNACE

    Get PDF
    International audienc

    The Nature of Radio Continuum Emission in the Dwarf Starburst Galaxy NGC 625

    Full text link
    We present new multi-frequency radio continuum imaging of the dwarf starburst galaxy NGC 625 obtained with the Very Large Array. Data at 20, 6, and 3.6 cm reveal global continuum emission dominated by free-free emission, with only mild synchrotron components. Each of the major HII regions is detected; the individual spectral indices are thermal for the youngest regions (showing strongest H Alpha emission) and nonthermal for the oldest. We do not detect any sources that appear to be associated with deeply embedded, dense, young clusters, though we have discovered one low-luminosity, obscured source that has no luminous optical counterpart and which resides in the region of highest optical extinction. Since NGC 625 is a Wolf-Rayet galaxy with strong recent star formation, these radio properties suggest that the youngest star formation complexes have not yet evolved to the point where their thermal spectra are significantly contaminated by synchrotron emission. The nonthermal components are associated with regions of older star formation that have smaller ionized gas components. These results imply a range of ages of the HII regions and radio components that agrees with our previous resolved stellar population analysis, where an extended burst of star formation has pervaded the disk of NGC 625 over the last ~ 50 Myr. We compare the nature of radio continuum emission in selected nearby dwarf starburst and Wolf-Rayet galaxies, demonstrating that thermal radio continuum emission appears to be more common in these systems than in typical HII galaxies with less recent star formation and more evolved stellar clusters.Comment: ApJ, in press; 27 pages, 5 figures. Full-resolution version may be obtained at http://www.astro.umn.edu/~cannon/n625.vla.p

    Extended mid-infrared emission from VV 114: probing the birth of a ULIRG

    Full text link
    We present our 5-16 micron spectro-imaging observations of VV114, an infrared luminous early-stage merger, taken with the ISOCAM camera on-board ISO. We find that only 40% of the mid-infrared (MIR) flux is associated with a compact nuclear region, while the rest of the emission originates from a rather diffuse component extended over several kpc. This is in stark contrast with the very compact MIR starbursts usually seen in luminous infrared galaxies. A secondary peak of MIR emission is associated with an extra-nuclear star forming region which displays the largest Halpha equivalent width in the whole system. Comparing our data with the distribution of the molecular gas and cold dust, as well as with radio observations, it becomes evident that the conversion of molecular gas into stars can be triggered over large areas at the very first stages of an interaction. The presence of a very strong continuum at 5 microns in one of the sources indicates that an enshrouded active galactic nucleus may contribute to 40% of its MIR flux. We finally note that the relative variations in the UV to radio spectral properties between the merging galaxies provide evidence that the extinction-corrected star formation rate of similar objects at high z, such as those detected in optical deep surveys, can not be accurately derived from their rest-frame UV properties.Comment: 14 pages, 5 figures, accepted for publication in A&

    Star formation triggered by the Galactic HII region RCW 120: First results from the Herschel Space Observatory

    Get PDF
    By means of different physical mechanisms, the expansion of HII regions can promote the formation of new stars of all masses. RCW 120 is a nearby Galactic HII region where triggered star formation occurs. This region is well-studied - there being a wealth of existing data - and is nearby. However, it is surrounded by dense regions for which far infrared data is essential to obtain an unbiased view of the star formation process and in particular to establish whether very young protostars are present. We attempt to identify all Young Stellar Objects (YSOs), especially those previously undetected at shorter wavelengths, to derive their physical properties and obtain insight into the star formation history in this region. We use Herschel-PACS and -SPIRE images to determine the distribution of YSOs observed in the field. We use a spectral energy distribution fitting tool to derive the YSOs physical properties. Herschel-PACS and -SPIRE images confirm the existence of a young source and allow us to determine its nature as a high-mass (8-10 MSun) Class 0 object (whose emission is dominated by a massive envelope) towards the massive condensation 1 observed at (sub)-millimeter wavelengths. This source was not detected at 24 micron and only barely seen in the MISPGAL 70 micron data. Several other red sources are detected at Herschel wavelengths and coincide with the peaks of the millimeter condensations. SED fitting results for the brightest Herschel sources indicate that, apart from the massive Class 0 that forms in condensation 1, young low mass stars are forming around RCW 120. The YSOs observed on the borders of RCW 120 are younger than its ionizing star, which has an age of about 2.5 Myr.Comment: 5 pqges, 3 figures, accepted by A&A (Special issue on the Herschel first results

    Numerical simulations in the development of the French radioactive waste vitrification processes using induction furnace

    Get PDF
    International audienceFor many years, the CEA (Commissariat à l’Énergie Atomique et aux Énergies Alternatives) Marcoule France has developed various processes dedicated to radioactive waste confinement, especially vitrification processes for HLLW. For 15 years now, the numerical simulation has become an important tool for research and developement projects held in the CEA-AREVA Joint Vitrification Laboratory (LCV). Induction heating, fluid mechanics and thermal simulations take part of all new R&D projects. The apports of such simulations are, first, the enhancement of the working knowledge of existing process. Those data are very useful to define optimisation choices, for example upgrades made on the hot metallic melter used since the 90s at LaHague facility. Second, the simulations are, of course, also used at the conception stage of new processes as a tool allowing wide ranges parametric tests. This has been extensively used in the design of the cold crucible inductive melter (CCIM) commissioned in 2010 at La Hague plant. Finally, it is a powerful and relatively cheap tool for prospective studies for processes of the future. Whatever the purpose, the potential benefits are gains on the reliability, the output capacity and the life time

    Dust in an extremely metal-poor galaxy: mid-infrared observations of SBS 0335-052

    Get PDF
    The metal deficient (Z = Z_sun/41) Blue Compact Dwarf Galaxy (BCD) SBS 0335-052 was observed with ISOCAM between 5 and 17 mic. With a L_12mic/L_B ratio of 2.15, the galaxy is unexpectedly bright in the mid-infrared for such a low-metallicity object. The mid-infrared spectrum shows no sign of the Unidentified Infrared Bands, which we interpret as an effect of the destruction of their carriers by the very high UV energy density in SBS 0335-052. The spectral energy distribution (SED) is dominated by a very strong continuum which makes the ionic lines of [SIV] and [NeIII] very weak. From 5 to 17 mic, the SED can be fitted with a grey-body spectrum, modified by an extinction law similar to that observed toward the Galactic Center, with an optical depth of A_V~19-21 mag. Such a large optical depth implies that a large fraction (as much as ~ 75%) of the current star-formation activity in SBS 0335-052 is hidden by dust with a mass between 3x10^3 M_sun and 5x10^5 M_sun. Silicate grains are present as silicate extinction bands at 9.7 and 18 mic can account for the unusual shape of the MIR spectrum of SBS 0335-052. It is remarkable that such a nearly primordial environment contains as much dust as galaxies which are 10 times more metal-rich. If the hidden star formation in SBS 0335-052 is typical of young galaxies at high redshifts, then the cosmic star formation rate derived from UV/optical fluxes would be underestimated.Comment: 13 pages, 4 figures, requires aaspp4.sty, accepted in Ap

    Tropospheric ozone over Equatorial Africa: regional aspects from the MOZAIC data

    Get PDF
    We analyze ozone observations recorded over Equatorial Africa between April 1997 and March 2003 by the MOZAIC programme, providing the first ozone climatology deriving from continental in-situ data over this region. Three-dimensional streamlines strongly suggests connections between the characteristics of the ozone monthly mean vertical profiles, the most persistent circulation patterns in the troposphere over Equatorial Africa (on a monthly basis) such as the Harmattan, the African Easterly Jet, the Trades and the regions of ozone precursors emissions by biomass burning. During the biomass burning season in each hemisphere, the lower troposphere exhibits layers of enhanced ozone (i.e. 70 ppbv over the coast of Gulf of Guinea in December-February and 85 ppbv over Congo in June-August). The characteristics of the ozone monthly mean vertical profiles are clearly connected to the regional flow regime determined by seasonal dynamic forcing. The mean ozone profile over the coast of Gulf of Guinea in the burning season is characterized by systematically high ozone below 650hPa ; these are due to the transport by the Harmattan and the AEJ of the pollutants originating from upwind fires. The confinement of high ozone to the lower troposphere is due to the high stability of the Harmattan and the blocking Saharan anticyclone which prevents efficient vertical mixing. In contrast, ozone enhancements observed over Central Africa during the local dry season (June-August) are not only found in the lower troposphere but throughout the troposphere. Moreover, this study highlights a connection between the regions of the coast of Gulf of Guinea and regions of Congo to the south that appears on a semi annual basis. Vertical profiles in wet-season regions exhibit ozone enhancements in the lower troposphere due to biomass burning products transport from fires situated in the opposite dry-season hemisphere
    corecore