529 research outputs found
Non-equilibrium dynamics in the dual-wavelength operation of Vertical external-cavity surface-emitting lasers
Microscopic many-body theory coupled to Maxwell's equation is used to
investigate dual-wavelength operation in vertical external-cavity
surface-emitting lasers. The intrinsically dynamic nature of coexisting
emission wavelengths in semiconductor lasers is associated with characteristic
non-equilibrium carrier dynamics which causes significant deformations of the
quasi-equilibrium gain and carrier inversion. Extended numerical simulations
are employed to efficiently investigate the parameter space to identify the
regime for two-wavelength operation. Using a frequency selective intracavity
etalon, two families of modes are stabilized with dynamical interchange of the
strongest emission peaks. For this operation mode, anti-correlated intensity
noise is observed in agreement with the experiment. A method using effective
frequency selective filtering is suggested for stabilization genuine
dual-wavelength output.Comment: 15 pages, 7 figure
Mode-locking in vertical external-cavity surface-emitting lasers with type-II quantum-well configurations
A microscopic study of mode-locked pulse generation is presented for vertical
external-cavity surface-emitting lasers utilizing type-II quantum well
configurations. The coupled Maxwell semiconductor Bloch equations are solved
numerically where the type-II carrier replenishment is modeled via suitably
chosen reservoirs. Conditions for stable mode-locked pulses are identified
allowing for pulses in the \unit[100]{fs} range. Design strategies for type-II
configurations are proposed that avoid potentially unstable pulse dynamics.Comment: Main paper with supplementary material
The Impacts of Dimensionality, Diffusion, and Directedness on Intrinsic Cross-Model Simulation in Tile-Based Self-Assembly
Algorithmic self-assembly occurs when components in a disorganized collection autonomously combine to form structures and, by their design and the dynamics of the system, are forced to intrinsically follow the execution of algorithms. Motivated by applications in DNA-nanotechnology, theoretical investigations in algorithmic tile-based self-assembly have blossomed into a mature theory with research strongly leveraging tools from computability theory, complexity theory, information theory, and graph theory to develop a wide range of models and to show that many are computationally universal, while also exposing a wide variety of powers and limitations of each. In addition to computational universality, the abstract Tile-Assembly Model (aTAM) was shown to be intrinsically universal (FOCS 2012), a strong notion of completeness where a single tile set is capable of simulating the full dynamics of all systems within the model; however, this result fundamentally required non-deterministic tile attachments. This was later confirmed necessary when it was shown that the class of directed aTAM systems, those in which all possible sequences of tile attachments eventually result in the same terminal assembly, is not intrinsically universal (FOCS 2016). Furthermore, it was shown that the non-cooperative aTAM, where tiles only need to match on 1 side to bind rather than 2 or more, is not intrinsically universal (SODA 2014) nor computationally universal (STOC 2017). Building on these results to further investigate the impacts of other dynamics, Hader et al. examined several tile-assembly models which varied across (1) the numbers of dimensions used, (2) restrictions imposed on the diffusion of tiles through space, and (3) whether each system is directed, and determined which models exhibited intrinsic universality (SODA 2020). Such results have shed much light on the roles of various aspects of the dynamics of tile-assembly and their effects on the universality of each model. In this paper we extend that previous work to provide direct comparisons of the various models against each other by considering intrinsic simulations between models. Our results show that in some cases, one model is strictly more powerful than another, and in others, pairs of models have mutually exclusive capabilities. This direct comparison of models helps expose the impacts of these three important aspects of self-assembling systems, and further helps to define a hierarchy of tile-assembly models analogous to the hierarchies studied in traditional models of computation
The 3D abstract Tile Assembly Model is Intrinsically Universal
In this paper, we prove that the three-dimensional abstract Tile Assembly Model (3DaTAM) is intrinsically universal. This means that there is a universal tile set in the 3DaTAM which can be used to simulate any 3DaTAM system. This result adds to a body of work on the intrinsic universality of models of self-assembly, and is specifically motivated by a result in FOCS 2016 showing that any intrinsically universal tile set for the 2DaTAM requires nondeterminism (i.e. undirectedness) even when simulating directed systems. To prove our result we have not only designed, but also fully implemented what we believe to be the first intrinsically universal tile set which has been implemented and simulated in any tile assembly model, and have made it and a simulator which can display it freely available
Self-Replication via Tile Self-Assembly (Extended Abstract)
In this paper we present a model containing modifications to the Signal-passing Tile Assembly Model (STAM), a tile-based self-assembly model whose tiles are capable of activating and deactivating glues based on the binding of other glues. These modifications consist of an extension to 3D, the ability of tiles to form "flexible" bonds that allow bound tiles to rotate relative to each other, and allowing tiles of multiple shapes within the same system. We call this new model the STAM*, and we present a series of constructions within it that are capable of self-replicating behavior. Namely, the input seed assemblies to our STAM* systems can encode either "genomes" specifying the instructions for building a target shape, or can be copies of the target shape with instructions built in. A universal tile set exists for any target shape (at scale factor 2), and from a genome assembly creates infinite copies of the genome as well as the target shape. An input target structure, on the other hand, can be "deconstructed" by the universal tile set to form a genome encoding it, which will then replicate and also initiate the growth of copies of assemblies of the target shape. Since the lengths of the genomes for these constructions are proportional to the number of points in the target shape, we also present a replicator which utilizes hierarchical self-assembly to greatly reduce the size of the genomes required. The main goals of this work are to examine minimal requirements of self-assembling systems capable of self-replicating behavior, with the aim of better understanding self-replication in nature as well as understanding the complexity of mimicking it
Death after late failure of third ventriculostomy in children
Journal ArticleLate failure following successful third ventriculostomy for obstructive hydrocephalus is rare, and death caused by failure of a previously successful third ventriculostomy has been reported only once. The authors present three patients who died as a result of increased intracranial pressure (ICP) after late failure of a third ventriculostomy. Through a collaborative effort, three patients were identified who had died following third ventriculostomy at one of the authors' institutions. A 13-year-old girl with neurofibromatosis Type 1 underwent third ventriculostomy for obstructive hydrocephalus caused by a tectal lesion. Three years later her condition deteriorated rapidly over the course of 6 hours and she was found dead at home. A 4-year-old boy treated with third ventriculostomy for aqueductal stenosis presented 2 years postoperatively with symptoms of increased ICP. This patient suffered a cardiorespiratory arrest while under observation and died despite external ventricular drainage. A 10-year-old boy with previous ventriculoperitoneal (VP) shunt placement underwent conversion to a third ventriculostomy and shunt removal. Eight months after the procedure his condition deteriorated, with evidence of raised ICP, and he underwent emergency insertion of another VP shunt, but remained in a vegetative state and died of complications. Neuropathological examinations in two cases demonstrated that the third ventriculostomy was not patent, and there was also evidence of increased ICP. Late failure of third ventriculostomy resulting in death is a rare complication. Delay in recognition of recurrent ICP symptoms and a false feeling of security on the part of family and caregivers because of the absence of a shunt and the belief that the hydrocephalus has been cured may contribute to fatal complications after third ventriculostomy. Patients with third ventriculostomies should be followed in a manner similar to patients with cerebrospinal fluid shunts
Engaged queer scholarship: Probing a new paradigm of knowledge creation
This article features a reflexive iteration of engaged scholarship regarding the Queer Liberation Theory Project, a community-based research study with the social justice group Queer Ontario, which involves academics, activists, and artists, a number of whom are cross affiliated. We explore the tensions and challenges involved in developing and creating knowledge via an engaged scholarship process that must respect the historical philosophical perspectives of a social movement as well as today’s academic theories. This article addresses the challenges of developing new knowledge (a theory) that counters a powerful, neoliberal, mainstream segment of today’s lesbian, gay, bisexual, and transgender (LGBT) movements, with implications for society at large. The layered issues associated with engaged scholarship are disentangled, including vulnerability to neoliberalism, navigating competing perspectives, and how academics/activists/artists both understand and engage in knowledge creation
The Queer Liberation Theory Project
Community partners who also serve as researchers and academics are in a unique position to do engaged scholarship. With the QLT project, researchers have both challenged homo-normative LGBT stances, and engaged wider audiences in the conversation.York’s Knowledge Mobilization Unit provides services and funding for faculty, graduate students, and community organizations seeking to maximize the impact of academic research and expertise on public policy, social programming, and professional practice. It is supported by SSHRC and CIHR grants, and by the Office of the Vice-President Research & Innovation.
[email protected]
www.researchimpact.c
Accelerating Self-Assembly of Crisscross Slat Systems
We present an abstract model of self-assembly of systems composed of "crisscross slats", which have been experimentally implemented as a single-stranded piece of DNA [Minev et al., 2021] or as a complete DNA origami structure [Wintersinger et al., 2022]. We then introduce a more physically realistic "kinetic" model and show how important constants in the model were derived and tuned, and compare simulation-based results to experimental results [Minev et al., 2021; Wintersinger et al., 2022]. Using these models, we show how we can apply optimizations to designs of slat systems in order to lower the numbers of unique slat types required to build target structures. In general, we apply two types of techniques to achieve greatly reduced numbers of slat types. Similar to the experimental work implementing DNA origami-based slats, in our designs the slats oriented in horizontal and vertical directions are each restricted to their own plane and sets of them overlap each other in square regions which we refer to as macrotiles. Our first technique extends their previous work of reusing slat types within macrotiles and requires analyses of binding domain patterns to determine the potential for errors consisting of incorrect slat types attaching at undesired translations and reflections. The second technique leverages the power of algorithmic self-assembly to efficiently reuse entire macrotiles which self-assemble in patterns following designed algorithms that dictate the dimensions and patterns of growth.
Using these designs, we demonstrate that in kinetic simulations the systems with reduced numbers of slat types self-assemble more quickly than those with greater numbers. This provides evidence that such optimizations will also result in greater assembly speeds in experimental systems. Furthermore, the reduced numbers of slat types required have the potential to vastly reduce the cost and number of lab steps for crisscross assembly experiments
- …