
University of Arkansas, Fayetteville
ScholarWorks@UARK
Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2018

The 3D abstract Tile Assembly Model is
Intrinsically Universal
Aaron Koch

Daniel Hader

Matthew J. Patitz

Follow this and additional works at: http://scholarworks.uark.edu/csceuht

Part of the Computational Engineering Commons, and the Other Computer Engineering
Commons

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at ScholarWorks@UARK. It has been
accepted for inclusion in Computer Science and Computer Engineering Undergraduate Honors Theses by an authorized administrator of
ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Koch, Aaron; Hader, Daniel; and Patitz, Matthew J., "The 3D abstract Tile Assembly Model is Intrinsically Universal" (2018).
Computer Science and Computer Engineering Undergraduate Honors Theses. 59.
http://scholarworks.uark.edu/csceuht/59

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fcsceuht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csce?utm_source=scholarworks.uark.edu%2Fcsceuht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=scholarworks.uark.edu%2Fcsceuht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.uark.edu%2Fcsceuht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.uark.edu%2Fcsceuht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht/59?utm_source=scholarworks.uark.edu%2Fcsceuht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu

The 3D abstract Tile Assembly Model is Intrinsically Universal

An Undergraduate Honors College Thesis

in the

Department of Computer Science and Computer Engineering
College of Engineering
University of Arkansas

Fayetteville, AR
April, 2018

by

Aaron Koch

The 3D abstract Tile Assembly Model is Intrinsically Universal

Daniel Hader ∗ Aaron Koch † Matthew J. Patitz ‡

Abstract

In this paper, we prove that the three-dimensional abstract Tile Assembly Model (3DaTAM) is
intrinsically universal. This means that there is a universal tile set in the 3DaTAM which can be used to
simulate any 3DaTAM system. This result adds to a body of work on the intrinsic universality of models
of self-assembly, and is specifically motivated by a result in FOCS 2016 showing that any intrinsically
universal tile set for the 2DaTAM requires nondeterminism (i.e. undirectedness) even when simulating
directed systems. To prove our result we have not only designed, but also fully implemented what we
believe to be the first intrinsically universal tile set which has been implemented and simulated in any
tile assembly model, and have made it and a simulator which can display it freely available.

Table of Contents

1. Introduction

(a) Motivation

(b) Background

(c) Explicit Tileset

(d) Software

2. Definitions

(a) aTAM

(b) Simulation

(c) Intrinsic Universality

3. Construction

(a) Orientation

(b) Movement Patterns

(c) Datapath

(d) Adder Array

(e) Bracket

(f) Layout

(g) Correctness

∗Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR, USA dhader@email.

uark.edu. This author’s research was supported in part by National Science Foundation Grant CCF-1422152.
†Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR, USA aekoch@email.

uark.edu. This author’s research was supported in part by National Science Foundation Grant CCF-1422152.
‡Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR, USA patitz@uark.

edu This author’s research was supported in part by National Science Foundation Grant CCF-1422152 and CAREER-1553166.

1

dhader@email.uark.edu
dhader@email.uark.edu
aekoch@email.uark.edu
aekoch@email.uark.edu
patitz@uark.edu
patitz@uark.edu

1 Introduction

Self-Assembly Self-Assembly is a process which generates complexity out of randomness. From the self-
assembly of a snowflake via interactions between water molecules, to the assembly of a spiral galaxy from the
interactions between stars, self-assembly processes are responsible for much of the order we observe in the
universe. There are currently both practical and theoretical explorations of self-assembling systems. This
work is part of the theoretical exploration, but is motivated by the increasingly precise control possible in
the lab. This work moves forward a line of research exploring the theoretical capabilities and limitations of
different models of self-assembly. Comparing the capabilities and limitations of different models can help
guide and motivate the practical study of self-assembling systems.

Previous IU Results This work builds on previous explorations of intrinsic universality (IU) in other
models of self-assembly, including the 2-Handed Assembly Model (2HAM) and the 2D version of the abstract
Tile Assembly Model (aTAM). There are a mix of positive and negative IU results under different models and
parameters. The 2HAM has been shown not to be IU across temperatures (where temperature is a parameter
specifying the minimum binding threshold required for components to stably combine), but systems at each
specific temperature are IU [1]. The aTAM, both 2D and 3D, has been shown to not be IU at temperature
1 [4]. This result directly effects our construction, requiring that we make our IU tileset at least temperature
2.

Two results in the 2D aTAM are direct precursors to this work. One early exploration into IU in self-
assembly models found that the entire 2D aTAM is IU [2]. A later result was able to show that the subset
of 2D aTAM systems that are directed are not IU [3]. A primary motivation for this work was to explore
whether the 3D aTAM exhibited similar or different properties. If the 3D aTAM is IU both in totality as
well as in just the subset of directed systems, that provides evidence that the planarity of the 2D aTAM is
involved in the limitations of the power of the 2D aTAM.

Explicit IU Tileset Due to the complexity of other IU results, as far as we know no IU tileset has ever
been fully defined to the individual tile level. Our tileset is the first to be explicitly generated and tested in
full. We used a series of Python scripts to design, generate, and test each component of our construction.
We combined the tilesets for each component into a master tileset with approximately 100,000 tile types. We
explicitly defined the algorithm required to correctly seed our IU tileset for an arbitrary 3D aTAM system.
Therefore for very simple assemblies we can, given enough time and computational resources, simulate them
using our IU tileset to fully grow from seed to termination. This is a milestone in the exploration of self-
assembly models.

Simulation Software This construction put significant pressure on the standard software used to simulate
the aTAM. The previous software, called ISU TAS [5], could barely handle 1 million tiles in an assembly.
Some of our single components require more than 1 million tiles, and to fully simulate a single supercube
we need software that can handle tens of millions of tiles. PyTAS is an updated version of the ISU TAS
software that was developed concurrently with this construction to help handle these requirements. This
construction pushes the frontier of the scale of self-assembly simulation.

Simulation We simulated two example tilesets. The first is Grow, possibly the simplest tileset possible
containing a single tile with a single strength 2 glue on all of its faces. Grow is an infinite directed system
that fills space with a single tile type. The second example that we use is a very simple 4 tile system we
call CO-OP. CO-OP uses a single seed that uses strength 2 glues to in two different orthogonal directions
to grow two tiles which cooperate to place a single tile. Even this four tile assembly requires more than 1
billion tiles from our IU tileset to fully simulate, due to the 16 extra frontier locations that are generated as
direct neighbors of the differentiated locations.

2

2 Preliminaries

In this section, we present definitions for the models and concepts used throughout the paper.

2.1 Formal description of the 3D abstract Tile Assembly Model

This section gives a formal definition of the 3-dimensional version of the abstract Tile Assembly Model
(3DaTAM), which is the natural extension of the (2-dimensional) abstract Tile Assembly Model (aTAM) [7].
For readers unfamiliar with the aTAM, [6] gives an excellent introduction to the model, here we provide a
brief introduction.

Fix an alphabet Σ. Σ∗ is the set of finite strings over Σ. Z, Z+, and N denote the set of integers, positive
integers, and nonnegative integers, respectively. Given V ⊆ Z3, the full grid graph of V is the undirected
graph Gf

V = (V,E), and for all ~v1 = (x1, y1, z1) , ~v2 = (x2, y2, z2) ∈ V , {~v1, ~v2} ∈ E ⇐⇒ ‖~v1 − ~v2‖ = 1; i.e.,
if and only if ~v1 and ~v2 are adjacent in the 3-dimensional integer Cartesian space.

A tile type is a tuple t ∈ (Σ∗ × N)6; e.g., a unit cube with six sides listed in some standardized order,
each side having a glue g ∈ Σ∗ × N consisting of a finite string label and nonnegative integer strength. We
assume a finite set of tile types, but an infinite number of copies of each tile type, each copy referred to as
a tile. A tile set T is a set of tile types.

A configuration is a (possibly empty) arrangement of tiles on the integer lattice Z3, i.e., a partial function
α : Z3 99K T . Two adjacent tiles in a configuration interact, or are attached, if the glues on their abutting
sides are equal (in both label and strength) and have positive strength. Each configuration α induces a
binding graph Gb

α, a grid graph whose vertices are positions occupied by tiles, according to α, with an
edge between two vertices if the tiles at those vertices interact. An assembly is a connected non-empty
configuration, i.e., a partial function α : Z3 99K T such that Gf

dom α is connected and dom α 6= ∅. The shape
Sα ⊆ Z3 of α is dom α.

Given τ ∈ Z+, α is τ -stable if every cut of Gb
α has weight at least τ , where the weight of an edge is the

strength of the glue it represents. When τ is clear from context, we say α is stable. Given two assemblies
α, β, we say α is a subassembly of β, and we write α v β, if Sα ⊆ Sβ and, for all points p ∈ Sα, α(p) = β(p).

A tile assembly system (TAS) is a triple T = (T, σ, τ), where T is a finite set of tile types, σ : Z3 99K T
is the finite, τ -stable, seed assembly, and τ ∈ Z+ is the temperature. Given two τ -stable assemblies α, β,
we write α →T1 β if α v β and |Sβ \ Sα| = 1. In this case we say α produces β in one step. If α →T1 β,
Sβ \ Sα = {p}, and t = β(p), we write β = α+ (p 7→ t). The frontier of α is the set ∂T α =

⋃
α→T

1 β
Sβ \ Sα,

the set of empty locations at which a tile could stably attach to α. The t-frontier ∂Tt α ⊆ ∂T α of α is the
set
{
p ∈ ∂T α

∣∣ α→T1 β and β(p) = t
}
.

Let AT denote the set of all assemblies of tiles from T , and let AT<∞ denote the set of finite assemblies
of tiles from T . A sequence of k ∈ Z+ ∪ {∞} assemblies α0, α1, . . . over AT is an assembly sequence if, for
all 1 ≤ i < k, αi−1 →T1 αi. The result of an assembly sequence is the unique limiting assembly (for a finite
sequence, this is the final assembly in the sequence).

We write α →T β, and we say α produces β (in 0 or more steps) if there is an assembly sequence
α0, α1, . . . , αk−1 of length k = |Sβ \ Sα| + 1 such that (1) α = α0, (2) Sβ =

⋃
0≤i<k Sαi

, and (3) for all

0 ≤ i < k, αi v β. If k is finite then it is routine to verify that β = αk−1. We say α is producible if σ →T α,
and we write A[T] to denote the set of producible assemblies in T . The relation →T is a partial order on
A[T]. An assembly α is terminal if α is τ -stable and ∂T α = ∅. We write A�[T] ⊆ A[T] to denote the set of
producible, terminal assemblies. If |A�[T]| = 1 then T is said to be directed. When T is clear from context,
we may omit T from the notation above and instead write →1, →, ∂α, etc.

2.2 Simulation definition

To state our main result, we must formally define what it means for one TAS to “simulate” another. Our
definitions come from [4]. Intuitively, simulation of a system T by another system S is done by utilizing
some scale factor m ∈ Z+ such that m×m squares of tiles in S represent individual tiles in T , and there is
a “representation function” which is able to interpret the assemblies of S as assemblies in T .

3

From this point on, let T be a tile set and let m ∈ Z+. An m-block supertile over T is a partial function
α : Z3

m 99K T , where Zm = {0, 1, . . . ,m − 1}. Let BTm be the set of all m-block supertiles over T . The
m-block with no domain is said to be empty. For a general assembly α : Z3 99K T and (x′, y′, z′) ∈ Z3, define
αm(x′,y′,z′) to be the m-block supertile defined by αm(x′,y′,z′)(ix, iy, iz) = α(mx′ + ix,my

′ + iy,mz
′ + iz) for

0 ≤ ix, iy, iz < m. For some tile set S, a partial function R : BSm 99K T is said to be a valid m-block supertile
representation from S to T if for any α, β ∈ BSm such that α v β and α ∈ dom R, then R(α) = R(β).

For a given valid m-block supertile representation function R from tile set S to tile set T , define the

assembly representation function1 R∗ : AS → AT such that R∗(α′) = α if and only if α(x, y, z) = R
(
α′m(x,y,z)

)
for all (x, y, z) ∈ Z3. For an assembly α′ ∈ AS such that R(α′) = α, α′ is said to map cleanly to α ∈ AT
under R∗ if for all non empty blocks α′m(x,y,z), (x, y, z) + (ux, uy, uz) ∈ dom (α) for some (ux, uy, uz) ∈ U3

such that u2x + u2y + u2z ≤ 1, or if α′ has at most one non-empty m-block αm0,0. In other words, α′ may have
tiles on supertile blocks representing empty space in α, but only if that position is adjacent to a tile in α.
We call such growth “around the edges” of α′ fuzz and thus restrict it to be adjacent to only valid supertiles,
but not diagonally adjacent (i.e. we do not permit diagonal fuzz).

In the following definitions, let T = (T, σT , τT) be a TAS, let S = (S, σS , τS) be a TAS, and let R be an
m-block representation function R : BSm → T .

Definition 2.1. We say that S and T have equivalent productions (under R), and we write S ⇔ T if the
following conditions hold:

1. {R∗(α′)|α′ ∈ A[S]} = A[T].

2. {R∗(α′)|α′ ∈ A�[S]} = A�[T].

3. For all α′ ∈ A[S], α′ maps cleanly to R∗(α′).

Definition 2.2. We say that T follows S (under R), and we write T aR S if α′ →S β′, for some α′, β′ ∈ A[S],
implies that R∗(α′)→T R∗(β′).

Definition 2.3. We say that S models T (under R), and we write S |=R T , if for every α ∈ A[T], there
exists Π ⊂ A[S] where R∗(α′) = α for all α′ ∈ Π, such that, for every β ∈ A[T] where α→T β, (1) for every
α′ ∈ Π there exists β′ ∈ A[S] where R∗(β′) = β and α′ →S β′, and (2) for every α′′ ∈ A[S] where α′′ →S β′,
β′ ∈ A[S], R∗(α′′) = α, and R∗(β′) = β, there exists α′ ∈ Π such that α′ →S α′′.

The previous definition essentially specifies that every time S simulates an assembly α ∈ A[T], there
must be at least one valid growth path in S for each of the possible next steps that T could make from α
which results in an assembly in S that maps to that next step.

Definition 2.4. We say that S simulates T (under R) if S ⇔R T (equivalent productions), T aR S and
S |=R T (equivalent dynamics).

2.3 Intrinsic Universality

Now that we have a formal definition of what it means for one tile system to simulate another, we can
proceed to formally define the concept of intrinsic universality, i.e., when there is one general-purpose tile
set that can be appropriately programmed to simulate any other tile system from a specified class of tile
systems.

Let REPR denote the set of all supertile representation functions (i.e., m-block supertile representation
functions for some m ∈ Z+). Define C to be a class of tile assembly systems, and let U be a tile set. Note
that each element of C, REPR, and AU<∞ is a finite object, hence encoding and decoding of simulated and
simulator assemblies can be defined to be computable via standard models such as Turing machines and
Boolean circuits.

1Note that R∗ is a total function since every assembly of S represents some assembly of T ; the functions R and α are partial
to allow undefined points to represent empty space.

4

Definition 2.5. We say U is intrinsically universal for C at temperature τ ′ ∈ Z+ if there are computable
functions R : C → REPR and S : C → AU<∞ such that, for each T = (T, σ, τ) ∈ C, there is a constant
m ∈ N such that, letting R = R(T), σT = S(T), and UT = (U, σT , τ

′), UT simulates T at scale m and using
supertile representation function R.

That is, R(T) outputs a representation function that interprets assemblies of UT as assemblies of T , and
S(T) outputs the seed assembly used to program tiles from U to represent the seed assembly of T .

Definition 2.6. We say that U is intrinsically universal for C if it is intrinsically universal for C at some
temperature τ ′ ∈ Z+.

Definition 2.7. We say that C is intrinsically universal if there exists some U such that U is instrinsically
universal for C.

3 3DaTAM Intrinsic Universality Construction

Theorem 3.1. The 3DaTAM is intrinsically universal.

To prove Theorem 3.1, we must show that there exist functions R and S (of Definition 2.5) and some
tile set U such that, for each T = (T, σ, τ) which is a TAS in the 3DaTAM, there is a constant m ∈ N such
that, letting R = R(T), σT = S(T), and UT = (U, σT , τ

′), UT simulates T at scale m and using supertile
representation function R. To do so, we will set τ ′ = 2 (i.e. the simulations by U will all be at temperature
= 2), and we will explicitly define U and give the algorithms which implement R and S.

We first provide a high-level overview of the main components of the construction and the way they are
combined to create UT which simulates arbitrary 3D aTAM system T .

3.1 High-level overview

Let α ∈ A[T] be an arbitrary producible assembly of T , β ∈ A[UT] such that R(β) = α (i.e. β is a producible
assembly in UT which maps to α) and let ~v ∈ ∂T α be a location in α’s frontier. We will discuss the growth
of tiles in UT into βm~v , which is the m-block supertile in UT representing the frontier space ~v. Without loss
of generality, assume that given β, no further tile attachments can occur in any of the m-block supertile
locations adjacent to βm~v (i.e. the adjacent supertile locations are currently “complete”) and that no tiles
have been placed inside of βm~v .

To explain how our construction works, we will break it into logical modules, or sub-assemblies which
can be thought of as logical groups of tiles which perform specific computations or transfer of information.

The bulk of the explanation of our construction will revolve around simulating one time step, i.e. the
placement of a single tile in T , and the communication of the result (i.e. which tile was placed) to the tile’s
neighbors. The computation required to determine which tiles can be placed in which frontier locations is
performed by a component we call the Adder. The Adder receives input from each of the neighboring tiles
and performs a calculation to determine which tile or tiles can be placed given the input glues. When the
adder determines that a tile has enough input glues to be placed it outputs a signal to a component called
the bracket. The bracket ensures that only one tile type claims the location if there are multiple potential tile
types that can be placed. All the information required to perform this computation, to construct the adder
and the bracket, and to communicate the result with the neighboring tiles are encoded in a self-replicating
structure called the genome. However, we will first describe the encoding of the structures which transfer
information between components and supertiles.

3.1.1 Orientation

All tiles in UT use a relative orientation system used to establish direction of motion. This convention allows
us to reorient easily, keeping the idea of “up”, “forward”, and “right” independent of the cardinal directions
which might cause confusion. There are 24 distinct orientations, 4 orientations with respect to each of the

5

6 compass directions (North, East, South, West, Up, and Down). There are three orientation axes, D1,
D2, and D3. D1 is called the primary or forward direction. D2 is called the secondary or right direction.
D3 is called the tertiary or up direction. We describe each orientation using an ordered pair of letters from
{N,E, S,W,U,D}. The first letter represents the forward direction. The second letter represents the upward
direction. The orientation UN denotes that +D1=Up, -D1=Down, +D3=North, -D3=South, +D2=East,
-D2=West. Notice that the upward direction must be orthogonal to the forward direction, thus given a
forward direction, there are only 4 choices for the upward direction.

Major/Minor Orientation If we switch the direction of D1, then D2 and D3 should stay constant. In
other words, orientations with the opposite D1 and the same D3 should be differently handed. We arbitrarily
define that orientations with N, E, or U as D1 are major, left-handed orientations, and orientations with S,
W, or D as D1 are minor, right-handed orientations.

Critical Orientation The orientation NU is called the critical orientation in this construction. NU is the
most natural orientation to work in, thus several components prefer this orientation. The Adder Array is
entirely designed in the NU orientation, and the genome only activates datapaths when it is travelling in the
NU orientation.

3.1.2 Movement Patterns

Many components in this construction use similar glue arrangements to move. While these patterns will be
well-known to those intimately familiar with the aTAM, it is convenient to describe several commonly used
glue arrangements to avoid confusion.

Figure 1: Comparison of collision using cooperation(left) vs strength 2 glues(right)

Collision Tolerance Collision tolerance is important in the growth of the genome. A collision will occur
if a region of tiles grows from both the beginning and the end at the same time. The collision happens when
the two growth directions meet across a single tile gap, as seen in Figure 1. In the left movement pattern in
Figure 1, the black strength 1 glues communicate the data contained in tiles 1-4, while the different colored
glues communicate a signal down the length of the row. In the collision row, forward/backward facing black
glues are enough to cooperate across the gap without need of the signal. This will cause the signal that is
passed along that row to choose non-deterministically between the available signals. The signal that would
have been carried by that row if not for the collision might not be communicated correctly, which results
in an error. The right movement pattern uses strength 2 glues, and so does not suffer from the problem of
erroneous signals jumping the gap. In this case, there is only one variant of tiles with the cyan and green
strength 2 glues, so that row maintains correctness and determinism throughout the collision.

Diagonal Advance The diagonal advance movement pattern uses a single strength 2 glue per row to
advance into the next row and cooperation to fill in the row. The first tile into the row signals the tile

6

Figure 2: Three general movement strategies

immediately to its right or left to be the next tile to advance into a new row, thus the next row advancing
tile can always be found one tile forward and one tile right or left of the previous advancing tile forming a
diagonal line of tiles. This movement pattern is bi-directional but it is not collision tolerant.

Limited Strength 2 In the limited strength 2 movement pattern, each tile in a row uses a strength 2 glue
on its forward face and a different strength 2 glue on its backward face. Using different glues means that the
limited strength 2 movement strategy can be used to advance a constant distance. The limited strength 2
movement pattern is collision tolerant. If growth occurs from row 0 to row 1 and row 2 to row 1 at the same
time, row 1 will always be the same. This pattern is desirable when a constant distance must be covered, but
is useless if the required distance ever varies. This movement pattern is bi-directional and collision tolerant
and is mainly used for movement where growth may occur from the start and end at the same time.

Unlimited Strength 2 The unlimited strength 2 movement pattern uses the same strength 2 glue on the
forward and backward face. Once started this growth pattern will move in a straight line unless it collides
with a previously placed “stopper” tile. This is desirable when there is a variable distance between two
components. However, it introduces a dependency that the stopper tile(s) being placed before the unlimited
strength 2 movement starts, otherwise it is impossible to guarantee this movement pattern won’t result in
infinite growth. This movement pattern is reversible and collision tolerant, though it generally only used
from one direction.

Guide Rail The Guide Rail movement pattern has two sections, a single tile wide guide rail section and a
payload section which can carry an arbitrary amount of data. The guide rail section may use either a limited
or unlimited strength 2 movement pattern to move linearly in a single axis. The payload section presents a
strength 1 glue representing the data being carried in the forward and backward direction. As the guide rail
moves, the guide rail extends a strength 1 glue orthogonal to the direction of movement which allows the
payload to use cooperation to fill in each new row that the guide rail has grown into. The payload can be
thought of as “riding” the guide rail. The guide rail is used when the relative distance between two points is
fixed or only varies in one axis, which mainly occurs within components. The adder array and the bracket
use this movement pattern extensively.

Figure 3: The Delayed Activation movement pattern

7

Delayed Activation Delayed activation, also known as priming, is a technique that allows a row of tiles
to be activated by a single tile, like the fuse on a bomb. There are two stages to the priming movement
pattern. The first stage, called the priming stage, happens when a row that is growing in a plane dangles
strength 1 glues out of the plane. The second stage is called activation. Activation occurs when some event,
like a query or a tile winning the bracket, triggers a tile that cooperates with the primed strength 1 glues.
The activated row has strength 2 glues that start a datapath or trigger the growth of the genome into a
neighboring cube. The cooperation chain in the activation stage will stop if it reaches a “dead zone” in
which there is no dangling primed glue to continue the chain. Dead zones are important for callbacks in the
initialization phase and for activating only the desired sections of the glue genome.

Latches and Keys The key and latch pattern appears in several different contexts in this construction.
A latch is simply a row of tiles presenting only strength 1 glues into the next row. The data in the latch
cannot grow into the next row until a key begins cooperation. A diagram of a latch can be found in Figure
8. In that figure, latch rows are denoted as L−1. The Key and Latch movement pattern is used in three
contexts for three different purposes. In the delayed activation movement pattern, the latch is used to allow
data to be primed and the key is used as the activation trigger. In the circular latch, described later, the
latch is used to allow growth in one direction and prevent growth in the other direction, similar to a one-way
valve. In the tile placement variant of the datapath the latch is used to ensure a tile is placed before the
datapath can continue to advance, a requirement which will be discussed in the datapath section.

3.2 Datapath

Throughout the construction, it will be very important to be able to both move data and place tiles in very
specific locations. A datapath is a commonly used sub-assembly which allows data to be carried along a path
encoded by a linear series of tiles. The encoding is done by tiles that represent instructions which describe
how the datapath should move. As the datapath grows, its forward facing glues, relative to the movement
of the datapath, encode data in strength 1 glues which can be read through cooperation once the datapath
is finished growing. The datapath also has special left and right boundary tiles that signify the ends of the
datapath during its growth. These are used during the execution of some of the instructions and to allow
special callback tiles, which will be described later, to grow along the edges of the datapath.

3.2.1 Execution

A datapath consists of a contiguous line of tiles that encode the instructions that will be introduced mo-
mentarily. The left and rightmost tiles in this line are special boundary tiles. Each instruction tile has an
active and inactive version. The inactive tile simply has a strength 1 glue, in the forward direction, encoding
the type of instruction and data being carried, while the active version has a strength 2 glue, in the forward
direction, encoding the same information. The forward propagation of a datapath is done using something
very similar to the diagonal advance movement pattern with the only exceptions being during the execution
of certain instructions. At any given time, there is only a single active instruction which causes the datapath
to advance a single tile. Then, the next tile in the sequence becomes the active instruction. One thing to
note is that, in our implementation of the datapaths, the instructions are executed from right to left. This
choice is arbitrary however, and left to right executing datapaths could easily be constructed.

The only time when the datapaths propagation is not done using diagonal advance is during the execution
of the forward, turn, and place instructions. In these cases, the propagation is handled specially as described
below. However once these instructions finish, the diagonal advance pattern is continued starting at the next
instruction in the sequence.

3.2.2 Instructions

The following are the various instructions which can be used by a datapath to either place data or move.
Each instruction tile, in addition to encoding how the datapath should move, also encodes a single piece of
information in its forward glue to be carried across the datapath.

8

Buffer The buffer instruction simply moves the datapath one tile forward. Typically this instruction is
used to pad datapaths to a fixed length but it can also be used to move small distances forward. When active,
this instruction is the quintessential diagonal advance tile with a strength 2 glue in the forward direction.

Forward The forward instruction is always followed by a series of tiles representing a number c in binary.
Using a standard, fixed width, binary decrementer, the forward instruction causes the datapath to move
forward c tiles as the number encoded is decremented until it equals 0. During the execution of a forward
instruction, the forward propagation of the datapath is done by the strength 2 glues in the decrementer.
Strength 1 glues along the left and right sides of the fixed with decrementer allow the tiles beyond the
decrementer to fill in using cooperation. Once the decrementer is done, the instruction to the right of the
tiles that used to represent c becomes the active instruction and propagation returns to the diagonal advance
pattern.

One thing to note is that, in our implementation of the datapaths, the decrementer used in the forward
instruction decrements the count on every other row of tiles. Furthermore, after the last row of the decre-
menter, so that the next instruction can be activated, another row of tiles is placed. Thus, for a number c
represented in the tiles after the forward instruction, the datapath, in our implementation, propagates 2c+1
tiles forward. This, however, is not an issue because the distances encoded in the tiles can simply be halved,
plus or minus a single row using the buffer instruction, to account for the final single row.

Left/Right Turn The left and right turn instructions tell the datapath to turn in the respective direction
relative to forward using a standard data rotation tile set. After the turn is done, the forward direction of
the datapath’s orientation is changed but the upward direction is not. For example a datapath with the
orientation NU would have the orientation WU after a left turn.

Rise/Fall These instructions encode an upward or downward turn respectively. Once interpreted, these
instructions place a row of tiles forward with glues facing either up or down corresponding to the forward
facing glues encoding the data in the datapath. After one of these instructions, the orientation of the
datapath is changed accordingly. For example after a rise instruction, a NU oriented datapath would face
US. Likewise after a fall instruction, NU would become DN.

Place There are actually many place instructions, one corresponding to each different tile type that needs to
be placed. When a place instruction is executed, the datapath is moved forward 1 tile and the corresponding
tile is placed below, or downward relative to, the rightmost tile of the new row.

Stop This instruction causes the datapath to stop growing forward and ignore all of the remaining instruc-
tion. The data encoded in these instructions is still available to be read as strength 1 glues hanging off of
the front of the datapath.

Variable The variable instruction, when executed, stops the growth of the datapath. The datapath remains
stationary until some input data, growing orthogonally to the datapath using the unlimited strength 2
movement pattern, collides with the datapath at the variable instruction tile. This collision causes the data
encoded in the input to replace the data that the datapath was previously carrying and begins the execution
of the remaining instructions in the datapath.

3.2.3 Callback

During the initialization phase of the construction, which will be covered in more detail in following sections,
some datapaths need to grow fully before it’s safe for others to grow in order to preserve directedness. In
order to do this, certain datapaths perform a callback in which, once a datapath has fully grown, a single
tile wide path grows along its right or left boundary. This growth requires strength 1 glues available along
the far end of the boundary and requires a single tile wide open space in which the callback can grow.

9

Since the boundary tiles don’t require any tiles past the boundaries to operate these conditions are easily
met. It should also be noted that it’s not necessary for a datapath to grow callbacks. In order to allow for
datapaths with callbacks and datapaths without callbacks, different left and right boundaries can be given
to the datapath. Some boundaries contain the necessary glues for the callback to grow and the others do
not.

Furthermore, there are three different types of callbacks. The first two types are the right and left
end callbacks. These begin once the datapath has finished growing and they grow along the right and left
boundaries respectively. The final kind of callback is a right variable callback. This grows once a variable
instruction has caused the datapath to stop in order to wait for input. The reason why this variable is
needed is because, during initialization, some of the datapaths will have variable instructions that will not
receive input until later phases of the simulation. It’s important that these datapaths are present before
their input data begins growing otherwise the paths might not collide properly. Therefore the right variable
callback allows for the datapath with the variable instruction to signal to the next path in the initialization
sequence when it is ready to receive data, even though it has not finished fully growing.

Because callbacks have to grow backwards along the edges of their datapaths, it’s important that they
can perform all of the same turns that the datapath can. It’s not difficult to see how a callback can propagate
along the edge of a straight section of datapath, however the turn, rise, and fall instructions are a bit more
complicated. [TODO describe how the callback can grow along turns]

3.3 Genome

We use the term genome, denoted G, to specify the the information necessary for U to simulate the given
T . Specifically, this includes encoding (1) the definition of the glues and tiles of T , and (2) the information
necessary to construct the Adder and Bracket modules with dimensions and locations dictated by the size
of T . The particular ways in which this information is encoded is discussed in this section.

3.3.1 Layout

The basic building block of the genome is a row, laid out in D2. Rows are a sequence of tiles which have
either a data or logistical role. Logistical roles help the genome perform a function but do not ever leave
the genome; data roles are part of the instructions for a datapath which will, when activated, leave the
genome to transfer data throughout the supercube. There are three sections of the Genome. G1 contains
instructions on how the genome should propagate and decides how each row of the genome should behave.
G2 contains an encoding of the glue relationship between tiles in T and the datapaths required to transmit
that information to the adder array. G3 contains datapaths which initialize the internal components of the
supercube.

Figure 4: Bands (0:Red, 1:Blue, 2:Green) nest and rotate to form movement pattern

10

Bands The genome wraps around the supercube in three nested bands as seen in Figure 4. Each band
contains four intersections. These intersections occur at the meeting of two unique orientations. The names
take the form ABxCD where B and D are non-opposite faces and A is the opposite of D and B is the opposite
of C (Example NUxDS and SUxDN). A detailed layout of the bands can be found in Figure 5. Each band
has eight regions where movement instructions are read and four regions where the genome transfers to
another band. Both of these regions must use the diagonal advance movement pattern. However, data can
move in either direction around the band, which is problematic because the diagonal advance pattern is not
bi-directional. This requires both the turn regions and the movement instruction regions to use a movement
pattern called a circular latch to make the diagonal advance pattern bi-directional. These circular latch
regions are interfaced with short regions using the limited strength 2 movement pattern.

Cross Band Communication The six square regions in Figure 5 are called cross band communication
regions or turn regions. In these regions, bands are separated from each other by a constant distance. One
band will pass under the other band moving in the perpendicular direction. Turn regions are L rows wide and
L rows long, where L is the number of tiles in the genome. Turn regions use a diagonal advance movement
pattern. Along the diagonal data in the upper band lines up with the data in the lower band. At these
points the upper band drops the data down to the lower band and the lower band raises the data up to
the upper band using a limited strength 2 movement pattern to interface. After the turn is complete, it is
impossible to tell whether the upper band or lower band grew in first.

Figure 5: Layout of bands with orientation labels

3.3.2 G1 - Movement

The first section of the genome is devoted to moving the genome around. This section contains four groups
of movement instructions, one group for each band and one special group for the critical orientation. Each
orientation knows which group it belongs to and reads the instructions in that instruction group one by
one in a diagonal advance pattern. The signal that is read in each row propagates downstream (to the
right), and the tiles rows behave differently depending on which instruction that row is performing. Because
movement occurs in a diagonal advance pattern, the reading of the instructions must occur in a circular
latch. Instructions in the non-preferred direction of the circular latch that would normally result in a primed
row are ignored and treated as inert.

11

Figure 6: Four instruction groups, one for each of the three bands and one for the critical orientation.

Intersection This instruction signifies the end of a circular latch region and triggers the limited strength
2 interface to an intersection. This instruction occurs once per orientation, or 24 times per supercube.

Turn This instruction signifies the end of a circular latch region and triggers the limited strength 2 inter-
face to a cross band communication region. This instruction occurs once per orientation, or 24 times per
supercube.

Query This instruction signifies that a query may occur at this row of the genome. This row of the genome
is a priming row that primes all datapaths in G2. Although all datapaths are primed, the delimiters between
each tile and each side within each tile are not primed which creates dead zones, ensuring that only the
desired datapaths are activated. This instruction occurs six times per supercube only in the critical NU
orientation. Queries that occur in the non-preferred direction of a circular latch are ignored

Initialize This instruction primes G3 and generates the activation signal for G3, immediately beginning
initialization once this instruction is reached. This instruction occurs only once per supercube in the critical
NU orientation.

12

Prop This instruction signifies an inert section of the genome which simply advances one tile. Since the A
sequence of these forms a unary counter. Differences in the amount of these instructions is responsible for
the nesting of the bands.

Figure 7: Side view of circular latch with glues. Each square represents a full row of data. Rows with dots
use a diagonal advance movement pattern.

Circular Latch The Circular Latch is used exclusively by the genome to allow multiple supercubes to
trigger genome growth at the same time. This can be solved using a combination of collision tolerant “two-
way” regions and pairs of collision intolerant “one-way” regions, as shown in Figure 8. The two-way regions
operate using strength 2 glues to move a constant distance. The one-way regions, called circular latches, use
a single strength 2 glue per row to move forward and then cooperation to fill the row. Each circular latch
has a preferred and a non-preferred direction. If data is to move in the non-preferred direction, it must rise
out of its current plane and move forward until it reaches the next two-way region, at which point it can
drop back down into the original plane. Dropping back into the regular plane will then trigger the preferred
direction to grow until it collides with the original path. At the end of the process, it is impossible to tell
whether the data grew from the preferred or non-preferred direction.

Figure 8: Three possible growth sequences between point X and point Z

Circular Latch Growth Sequences There are three types of growth patterns that can occur during a
circular latch growth sequence, shown in Figure 8. In Figure 8 Points X and Z represent some checkpoint in
the genome movement between which there exists a circular latch; points labeled Y represent the interface
between the two-way and one-way sections of the circular latch.

13

3.3.3 G2 - Glue Table

Content and Generation G2 encodes the glue relations between each t in T and encodes those relations
in a datapath. To generate G2 for t0, first take the t0N glue and compare it to the tiS for all n tiles in T .
For each tiS that is a match, generate a datapath pointing to the AiS . Repeat, comparing all six opposite
pairs of directions. Repeat these steps for each ti in T . Using this method, glues can be described solely
as relations between tiles and can be represented as only the value of the glue strength. This information is
encoded in the genome in a sequence as shown in Figure 9.

Queries After a neighboring tile decides what tile type it is, the current supercube receives a packet
containing the neighboring tile number. That packet navigates to particular location and performs a glue
table query. The query can be fully described as a duple of tile number and direction labeled as Q(i,d). The
glue table hierarchy guarantees that all the information that a single query needs is located contiguously.
Tiles in the glue table are separated by a tile called a “Tile Delimiter”. Within each tile there are six
regions representing each of the six faces of the tile which are separated by a tile called a “Side Delimiter”.
Following the example shown in Figure 9, Q(2,E) signals that the Eastern neighbor completed as t2. The
query increments a counter each time it encounters a Tile Delimiter and ignores everything until the next
Tile Delimiter unless the counter is equal to i. When the correct tile is found, the query advances down the
glue table until it encounters the correct Side Delimiter, at which point it generates a tile which activates all
the datapaths until the next Side Delimiter or Tile Delimiter. These datapaths contain binary information
about the strength of the glue and routing information required to get to the correct Adder Unit without
colliding with any other datapath.

Figure 9: Glue table layout

3.3.4 G3 - Initialization

Initialization consists of a sequence of datapaths that place tiles which seed the adder array, bracket, and
external communication components. The order in which these datapaths grow is particularly important
because some of these components will, at some point, grow tiles using unlimited strength 2 propagation.
The datapaths must be guaranteed to place tiles that will stop the unlimited strength 2 propagation before
the propagation begins, otherwise it’s possible that the propagating tiles will grow beyond where they should
have been stopped.

Since an adder in the adder array will, when it succeeds, propagate the successful tile information to the
bracket using strength 2 glues, the bracket must be in place to catch the propagating signal before the adder

14

can determine if a tile can be placed. This is handled by making sure that the datapaths that place the
bracket, from the initialization, grow fully before the datapaths that will place the adder seed. Moreover,
one of the signals propagating with strength 2 will make it out of the bracket. This signal will be intercepted
by the external communication datapaths that will grow to query the adjacent supercubes. [Daniel - We
probably need a separate section talking about how the datapaths that do this use the variable instructions]
This interception will allow them to, using the variable datapath instruction, carry the information regarding
which simulated tile won the bracket to the adjacent supercubes. Therefore, the datapaths for external
communication need to grow before the datapaths that will place the bracket, which themselves need to
grow before the datapaths that will place the adder seed.

The datapaths for external communication will be the first datapaths along the activation strip. These
will be activated immediately once the activation strip grows. They grow to a fixed position directly below
where the bracket will be placed. They then will stop using a variable instruction until they receive the
signal containing the winning tile number from the bracket. The variable instruction will cause a callback
signal to grow along the right boundary of the datapath which will activate the first of the datapaths that
will place the bracket. The bracket is placed using dlog2 |T |e datapaths which will place each of the levels in
the bracket. Each of these datapaths will, once finished, grow a callback signal along the right boundary to
cause the next one to grow. These datapaths need to be grown sequentially because the entire bracket needs
to be placed before the adder should be allowed to grow. Once the final bracket placing datapath grows,
its callback signal will activate the datapaths that will place the adder seed. The datapaths that place the
adder seed can all be grown simultaneously so there does not need to be a callback between each of these
datapaths.

3.4 Adder Array

During the simulation, it is necessary to determine whether or not a tile, in the simulated system, can bind
with sufficient strength to grow into a given location. The adder array is responsible for calculating the total
glue strength with which a tile can grow and comparing that strength to τT .

3.4.1 Hierarchy

Adder Array - A - The complete collection of adder units, with one adder unit for each t in T . 1 per
supercube.

Adder Unit - Ai - An adder unit is a collection of component adders. If one component adder ends in
a non-negative result then the adder unit succeeds. Inputs are denoted as Ai(d), where d is one of the six
input directions.

Component Adder - Ai[x] - A component adder performs a sum of a subset of the six input glues and
compares to τ . There are 63 component adders in one adder unit. Here, x is a 6-bit binary number between
1 and 63 where each bit represents whether to consider or ignore one of the input directions (LSB - N E S
W U D - MSB).

Partial Adder - Ai[x][d] - Each component adder has seven partial adders, one for each of the six directions
and one for comparison with tau.

Overview The Adder Array contains an Adder Unit (Ai) for each (ti) in T . Each Adder Unit is responsible
for determining if ti is valid in the current frontier location. Since we do not know if or when a neighbor will
complete, we must check each of the 6 choose n combinations of inputs. Disregarding 6 choose 0 there are
63 possible input combinations. Each Adder Unit contains 63 Adder components which are each responsible
for checking one combination of inputs. Each component adder will not complete until (all) of its inputs are
present, so it is necessary to consider each combination of inputs independently.

15

Figure 10: Partial Adders layout within a Component Adder

Success When an adder component receives all its required inputs it sums its inputs and subtracts τ . If
the result is greater than or equal to zero then that adder component succeeds. If any of the component
adders in Ai succeeds then Ai succeeds.

Inputs Ai receives a binary representation of a strength (1 ≤ S ≤ τ) in one of six input slots which
represent the neighbor direction. Each of the 6 inputs is delivered to each of the 63 component adders but
will be ignored if that component adder doesn’t consider it.

Output If Ai succeeds then Ai sends a binary representation of i to the bracket. The bracket is positioned
such that the bracket input for ti is directly below the output region of Ai and is guaranteed to be fully
formed before Ai succeeds, so the output data rides to the bracket using strength 2 glues.

Figure 11: Adder schematic (side)

Periodic Counters The adder unit has several repeating structures which must appear multiple times, at
regular intervals. Component adders must be regularly spaced along the adder, and partial adders must be
regularly spaced along component adders. We use a variant of binary decrementer called a periodic counter
to efficiently provide the required periodic structure. A periodic counter functions like a regular binary
decrementer, except that it preserves its starting value throughout its count and resets to that value once
it hits zero. If unrestricted, a generic periodic counter will continue repeating infinitely many times, which
is not a desired behaviour in this construction. We use a simple (non-periodic) decrementer initialized with
the total desired length of the periodic counters to restrict the periodic counters. A periodic counter receives
signals from the layer below it and send signals to the the layer above it. Periodic counters have two states:
zero and non-zero. When non-zero, the periodic counter passes a ”continue” signal to the layer above. When
zero, the periodic counter sends a ”zero” signal unique to its layer to the the layer above. When multiple
periodic counters are stacked, as in Figure 11, multiple zero signals may occur in several layers at the same
point. In this case, the bottom-most periodic counter’s zero signal takes precedence and is displayed to the
uppermost layer (See Figure 12).

16

Figure 12: Example of a 2-layer periodic counter

Main Counter The main counter layer contains the binary representation of the component adder. Recall
that a component adder is addressed by a six bit binary number where each bit represents whether to check
or ignore input from a particular neighbor. The main counter begins with the component adder address
000001 and increments each time the PC 0 sends a zero signal. Within each component adder, partial adders
are constructed to be log2(τ) + 1 bits wide. PC1 is set to repeat this distance plus one to allow a gap for
the result of the addition to advance. The component adder always considers the least significant bit (LSB)
of the main counter first. If the LSB is 1, then the partial adder is constructed to wait for input from
the northern neighbor. If the LSB is 0, then the partial adder is constructed to ignore the input from the
northern neighbor and present zero as the input. When the PC1 sends a zero signal, the main counter leaves
a gap row and then constructs the partial adder of the next highest bit.

Inputs The top half of Figure 11 shows that each input is sent into each component adder. Each input
is presented to each component adder, either to be rejected or accepted depending on the address of the
component adder. Not shown in Figure 11 is that each of the inputs is guided by a copy of the Total Length
Counter and PC0. Whenever the PC0 zero signal is sent, the input data forks itself and drops down into
the corresponding partial adder. The guide rails are offset in the the forward direction by a multiple of the
period of PC1 to ensure that the input drops into the correct location.

3.5 Bracket

Once an adder Ai succeeds, a binary representation of i is propagated to the bracket. This propagation
signifies that tile ti ∈ T is a valid tile which could grow into the simulated tile location. In fact, because
the simulated system T might have multiple valid tiles that can grow into any specific location, there may
be multiple successful adders, in which case a number of binary representations will be propagated to the
bracket. This propagation is done by a single tile wide carrier backbone that moves using strength 2 glues.
The binary information is carried down the backbone using strength 1 cooperation (Perhaps an image would
be useful). Because the backbone moves using strength 2 glues, it must move in a straight line and cannot
stop without being blocked. The bracket, by blocking and cooperating with these propagating backbones,
guides them through paths resembling those in a tournament bracket. This is done in such a way that at any
points where multiple paths might intersect, only the first arriving backbone will be allowed to propagate
further into the bracket. This tournament styled bracket is the mechanism by which the supercube determines
which of the potential tiles from T to represent. Furthermore when simulating a directed system in which
there are never multiple distinct tiles that can grow into a location, the bracket will allow the single binary
representation to pass through without any non-determinism.

Guiding the backbone is done using two different two-tile wide blockers called turn barriers and merge
barriers. These barriers are placed during the initialization phase of the simulation and are guaranteed to be
in place before the adders can start the propagation of the binary information. The backbone has strength
2 glues in the downward direction allowing it to propagate indefinitely downward. It’s East and West glues
however, have strength 1. Once the backbone collides with a one of the tiles of a barrier, these strength 1
glues will allow the backbone to cooperate with the second tile of the barrier to change direction. The data

17

riding along the backbone also has strength 1 glues to the East and West so that when the backbone changes
direction, the data can change direction and continue to ride along the backbone.

3.5.1 Turn Barriers

If the barrier is a turn barrier, the backbone, after cooperating, will begin to propagate using strength 2
glues in the East or West direction depending on which side it cooperated. This propagation is temporary
though and will only last until the backbone collides with a merge barrier. This is extremely similar behavior
to the rise and fall instructions in the datapath however there is no secondary orientation associated with
the data being moved. During this sideways propagation, the backbone will have a strength 1 glue in the
upward direction to allow it to cooperate with the merge barrier once it collides.

3.5.2 Merge Barriers

[TODO]

Figure 13: (1) Backbone propagates until it collides with turn barrier (2) Cooperation between backbone
and barrier (3) Eastward propagation until collision with merge barrier (4) Cooperation with merge barrier
(5) Strength 2 path up and around merge barrier after which data propagates downward again

3.6 Supercube layout

TODO: describe how the main components are organized within a supercube, and the process of creating
each of them from an “input” provided by an adjacent supercube.

Figure 14: Complete data flow from query to communication. Initialization assumed to have completed.

18

Sequence The construction may be thought of as occuring sequentially in the following order. However,
in reality several of these steps may occur in parallel. Parallelism is only a problem if unexpected or out of
control growth can occur if a dependency is not present. There are only two processes in this construction that
have that dependency: the adder output to bracket input and the bracket output to external communication
input. These two processes use strength 2 glues to propagate until collision with a geometric blocker. If the
expected blocker is not placed before the strength 2 glues begin to propagate then the construction will fail.
This issue is resolved in the initialization stage which uses callbacks to ensure that all dependencies are fully
complete before the adder array can send an output to the bracket.

1. Genome Growth

2. Initialization

(a) External Communication

(b) Bracket

(c) Adder Array

3. Query

4. Adder Success

5. Bracket

6. Neighbor Genome Growth Activation

7. External Communication

Initial Growth Phase A target supercube has six neighboring supercubes. The target supercube has one
genome input region from each of its neighbors and has one genome output region to each of its neighbors.
Except for seed supercubes, a target supercube is empty until one of its genome input regions receive data
from the corresponding neighbor’s genome output region. Once the genome input region has received data,
genome growth begins in the target supercube as described in [reference movement section] and will continue
until the genome shell is complete. As part of the initial growth phase the genome will reach a specific
orientation called the critical orientation. The critical orientation, in our system arbitrarily chosen to be
NU, is the only orientation that exposes ”Query” and ”Initialize” instructions. Once the critical orientation
is reached the initialization and query instructions may occur in parallel.

Query A query activates datapaths which carry glue strength data from the glue genome to adders in
the adder array. The mechanism for activation is described in section [reference query section]. The query
may occur in parallel with the initialization step, but will be inert until the target adder is initialized.

Adder Success Each adder in the adder unit will wait for input from the six potential queries. When an
input enters an adder, each of the component adders will receive that input. If the current combination of
inputs causes at least one component adder to succeed, then the adder will succeed and pass its tile number
to the bracket.

Bracket The bracket receives tile numbers from the successful adders in the adder array. The tile numbers
propagate through the points of competition in the bracket until one tile number reaches the final point of
competition. The target supercube is now differentiated. Differentiation starts two processes, genome growth
activation and external communication.

19

Genome growth activation When a tile number wins the bracket, the first external communication
variable datapath receives the tile number. Upon reception of data, a callback is initiated which sends a
signal back to the genome. This signal propagates along the edge of the genome using cooperation to reach
each of the twelve intersections. Upon completion of genome growth, each intersection has two internal
directions and two external directions. The external directions are primed and ready to be activated when
this callback signal reaches the intersection. For each face of the supercube, only one output region and
only one input region is required. These regions are chosen arbitrarily, with the only constraint being that
the input direction of a face must be the opposite direction as the output region of the opposite face. This
results in only 12 of the 24 orientations being involved in genome growth activation, therefore it is possible
to entirely eliminate parts of the three band structure to decrease the number of tiles in the IU tileset. After
crossing a small inter-tile gap the output tiles place a copy of one of the intersections of the neighboring
supercube, which begins growth phase 1 for that neighbor.

External communication When a tile number wins the bracket, that tile number is placed into the
payload of the six external communication datapaths, one for each neighboring supercube. The datapaths’
instructions describe a path from the pickup location to the correct query location in the neighboring
supercube. The direction the query came from is encoded spatially by the layout of the genome, therefore
by navigating to the correct location in the neighboring supercube and depositing the correct payload the
external communication datapath initiates the correct query Q(i,d) where i is the winning tile number and
d is the opposite direction of the neighbor.

Figure 15: External Communication Stages

3.7 Dynamics and correctness

3.7.1 Seed

The seed supercube(s) consists of a single row of the genome and a seeded bracket.

Genome Any correctly placed row of the genome will grow into the full three bands of the supercube
genome, so we arbitrarily picked the intersection between NU and DS to seed the genome.

Bracket The tile that wins the bracket The bracket must be seeded such that the seed tile is guaranteed
to win all of its points of competition. This solves a problem in maintaining determinism that arises in
multi-seeded assemblies.

20

3.7.2 Correctness

Input/Output Loop The outputs of one supercube are the inputs of another supercube. The genome
growth activation step triggers genome growth in each of the neighboring supercubes and the external
communcation step triggers a query to each of the neighboring supercubes. This loop will continue until
there are no more frontier supercubes which have enough inputs to differentiate into a tile, at which point
the simulation terminates.

References

[1] Erik D. Demaine, Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller, Scott M. Summers, and
Damien Woods, The two-handed tile assembly model is not intrinsicall universal, Algorithmica 74 (2016),
no. 2, 812–850.

[2] David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, and Damien
Woods, The tile assembly model is intrinsically universal, Proceedings of the 53rd Annual IEEE Sympo-
sium on Foundations of Computer Science, FOCS 2012, 2012, pp. 302–310.

[3] Jacob Hendricks, Matthew J. Patitz, and Trent A. Rogers, Universal simulation of directed systems in the
abstract tile assembly model requires undirectedness, Proceedings of the 57th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2016), New Brunswick, New Jersey, USA October 9-11,
2016, pp. 800–809.

[4] Pierre-Étienne Meunier, Matthew J. Patitz, Scott M. Summers, Guillaume Theyssier, Andrew Winslow,
and Damien Woods, Intrinsic universality in tile self-assembly requires cooperation, Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms (SODA 2014), (Portland, OR, USA, January 5-7, 2014),
2014, pp. 752–771.

[5] Matthew J. Patitz, Simulation of self-assembly in the abstract tile assembly model with isu tas, Tech.
Report 1101.5151, Computing Research Repository, 2011.

[6] Paul W. K. Rothemund and Erik Winfree, The program-size complexity of self-assembled squares (ex-
tended abstract), STOC ’00: Proceedings of the thirty-second annual ACM Symposium on Theory of
Computing (Portland, Oregon, United States), ACM, 2000, pp. 459–468.

[7] Erik Winfree, Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute of Technology, June
1998.

21

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2018

	The 3D abstract Tile Assembly Model is Intrinsically Universal
	Aaron Koch
	Daniel Hader
	Matthew J. Patitz
	Recommended Citation

	tmp.1524854869.pdf.sKkox

