1,075 research outputs found

    Optimal binning of X-ray spectra and response matrix design

    Get PDF
    A theoretical framework is developed to estimate the optimal binning of X-ray spectra. We derived expressions for the optimal bin size for model spectra as well as for observed data using different levels of sophistication. It is shown that by taking into account both the number of photons in a given spectral model bin and their average energy over the bin size, the number of model energy bins and the size of the response matrix can be reduced by a factor of 10−10010-100. The response matrix should then contain the response at the bin centre as well as its derivative with respect to the incoming photon energy. We provide practical guidelines for how to construct optimal energy grids as well as how to structure the response matrix. A few examples are presented to illustrate the present methods.Comment: 16 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    The mass and energy budget of Cassiopeia A

    Get PDF
    Further analysis of X-ray spectroscopy results recently obtained from the MOS CCD cameras on-board XMM-Newton provides a detailed description of the hot and cool X-ray emitting plasma in Cas A. Measurement of the Doppler broadening of the X-ray lines is consistent with the expected ion velocities, ~1500 km/s along the line of sight, in the post shock plasma. Assuming a constant total pressure throughout the remnant we estimate the total remnant mass as 10 Msun and the total thermal energy as 7E43 J. We derive the differential mass distribution as a function of ionisation age for both X-ray emitting components. This distribution is consistent with a hot component dominated by swept up mass heated by the primary shock and a cool component which are ablated clumpy ejecta material which were and are still being heated by interaction with the preheated swept up material. We calculate a balanced mass and energy budget for the supernova explosion giving 1E44 J in ejected mass; approximately 0.4 Msun of the ejecta were diffuse with an initial rms velocity of 15000 km/s while the remaining ~1.8 Msun were clumpy with an initial rms velocity of ~2400 km/s. Using the Doppler velocity measurements of the X-ray spectral lines we can project the mass into spherical coordinates about the remnant. This provides quantitative evidence for mass and energy beaming in the supernova explosion. The mass and energy occupy less than 4.5 sr (<40 % of the available solid angle) around the remnant and 64 % of the mass occurs in two jets within 45 degrees of a jet axis. We calculate a swept up mass of 7.9 Msun in the emitting plasma and estimate that the total mass lost from the progenitor prior to the explosion could be as high as ~20 Msun.Comment: 8 pages, 7 figures, submitted to Astronomy & Astrophysic

    Measuring the cosmic ray acceleration efficiency of a supernova remnant

    Get PDF
    Cosmic rays are the most energetic particles arriving at earth. Although most of them are thought to be accelerated by supernova remnants, the details of the acceleration process and its efficiency are not well determined. Here we show that the pressure induced by cosmic rays exceeds the thermal pressure behind the northeast shock of the supernova remnant RCW 86, where the X-ray emission is dominated by synchrotron radiation from ultra-relativistic electrons. We determined the cosmic-ray content from the thermal Doppler broadening measured with optical spectroscopy, combined with a proper-motion study in X- rays. The measured post-shock proton temperature in combination with the shock velocity does not agree with standard shock heating, implying that >50% of the post-shock pressure is produced by cosmic rays.Comment: Published in Science express, 10 pages, 5 figures and 2 table

    Synoptic study of the SMC SNRs using XMM-Newton

    Full text link
    We present a detailed X-ray spectral analysis of 13 supernova remnants (SNR) in the Small Magellanic Cloud (SMC). We apply both single-temperature non-equilibrium ionisation models and models based on the Sedov similarity solution, where applicable. We also present detailed X-ray images of individual SNRs, which reveal a range of different morphological features. Eight remnants, viz DEM S 32, IKT 2, HFPK 419, IKT 6, IKT 16, IKT 18 and IKT 23, are consistent with being in their Sedov evolutionary phase. IKT 6 and IKT 23 both have a clear shell like morphology with oxygen-rich X-ray emitting material in the centre. We draw attention to similarities between these two remnants and the well studied, oxygen-rich remnant IKT 22 (SNR 0102-72.3) and propose that they are more evolved versions of IKT 22. IKT 4, IKT 5, DEM S 128 and IKT 5 are evolved remnants which are in, or in the process of entering, the radiative cooling stage. We argue that the X-ray emission from these four remnants is most likely from the ejecta remains of type Ia SNe. Our modeling allow us to derive estimates for physical parameters, such as densities, ages, masses and initial explosion energies. Our results indicate that the average SMC hydrogen density is a factor of ~6 lower as compared to the Large Magellanic Cloud. This has obvious implications for the evolution and luminosities of the SMC SNRs. We also estimate the average SMC gas phase abundances for the elements O, Ne, Mg, Si and Fe.Comment: submitted to A&

    High- and low energy nonthermal X-ray emission from the cluster of galaxies A 2199

    Full text link
    We report the detection of both soft and hard excess X-ray emission in the cluster of galaxies A 2199, based upon spatially resolved spectroscopy with data from the BeppoSAX, EUVE and ROSAT missions. The excess emission is visible at radii larger than 300 kpc and increases in strength relative to the isothermal component. The total 0.1-100 keV luminosity of this component is 15 % of the cluster luminosity, but it dominates the cluster luminosity at high and low energies. We argue that the most plausible interpretation of the excess emission is an inverse Compton interaction between the cosmic microwave background and relativistic electrons in the cluster. The observed spatial distribution of the non-thermal component implies that there is a large halo of cosmic ray electrons between 0.5-1.5 Mpc surrounding the cluster core. The prominent existence of this component has cosmological implications, as it is significantly changing our picture of a clusters's particle acceleration history, dynamics between the thermal and relativistic media, and total mass budgets.Comment: Accepted for publication in Astrophysical Journal, Letter
    • …
    corecore