7,418 research outputs found
Recommended from our members
Optimization of the LHC Interaction Region With Respect to Beam-Induced Energy Deposition
Energy deposition in the superconducting magnets by particles from p-p collisions is a significant challenge for the design of the LHC high luminosity insertions. We have studied the dependence of the energy deposition on the apertures and strengths of insertion magnets and on the placement of absorbers in front of and within the quadrupoles. Monte Carlo simulations were made using the code DTUJET to generate 7 x 7 TeV p-p events and the code MARS to follow hadronic and electromagnetic cascades induced in the insertion components. The 3D geometry and magnetic field descriptions of the LHC-4.1 lattice were used. With a quadrupole coil aperture 70 mm, absorbers can be placed within the magnet bore which reduce the peak power density, at full luminosity, below 0.5 mW/g, a level that should allow the magnets to operate at their design field. The total heat load can be removed by a cooling system similar to that used in the main magnets
Dual equilibrium in a finite aspect ratio tokamak
A new approach to high pressure magnetically-confined plasmas is necessary to
design efficient fusion devices. This paper presents an equilibrium combining
two solutions of the Grad-Shafranov equation, which describes the
magnetohydrodynamic equilibrium in toroidal geometry. The outer equilibrium is
paramagnetic and confines the inner equilibrium, whose strong diamagnetism
permits to balance large pressure gradients. The existence of both equilibria
in the same volume yields a dual equilibrium structure. Their combination also
improves free-boundary mode stability
Observation of a multimode plasma response and its relationship to density pumpout and edge-localized mode suppression
Density pumpout and edge-localized mode (ELM) suppression by applied n=2 magnetic fields in low-collisionality DIII-D plasmas are shown to be correlated with the magnitude of the plasma response driven on the high-field side (HFS) of the magnetic axis but not the low-field side (LFS) midplane. These distinct responses are a direct measurement of a multimodal magnetic plasma response, with each structure preferentially excited by a different n=2 applied spectrum and preferentially detected on the LFS or HFS. Ideal and resistive magneto-hydrodynamic (MHD) calculations find that the LFS measurement is primarily sensitive to the excitation of stable kink modes, while the HFS measurement is primarily sensitive to resonant currents (whether fully shielding or partially penetrated). The resonant currents are themselves strongly modified by kink excitation, with the optimal applied field pitch for pumpout and ELM suppression significantly differing from equilibrium field alignment.This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Fusion
Energy Sciences, using the DIII-D National Fusion Facility,
a DOE Office of Science user facility, under Awards No. DE-FC02-04ER54698, No. DE-AC02-09CH11466,
No. DE-FG02-04ER54761, No. DE-AC05-06OR23100,
No. DE-SC0001961, and No. DE-AC05-00OR22725.
S. R. H. was supported by AINSE and ANSTO
Interaction region local correction for the Large Hadron Collider
The performance of the Large Hadron Collider (LHC) at collision energy is limited by the field quality of the interaction region (IR) quadrupoles and dipoles. In this paper we study the impact of the expected field errors of these magnets on the dynamic aperture (DA). Since the betatron phase advance is well defined for magnets that are located in regions of large beta functions, local corrections can be very effective and robust. We compare possible compensation schemes and propose a corrector layout to meet the required DA performance. (7 refs)
Competing Ultrafast Energy Relaxation Pathways in Photoexcited Graphene
For most optoelectronic applications of graphene a thorough understanding of
the processes that govern energy relaxation of photoexcited carriers is
essential. The ultrafast energy relaxation in graphene occurs through two
competing pathways: carrier-carrier scattering -- creating an elevated carrier
temperature -- and optical phonon emission. At present, it is not clear what
determines the dominating relaxation pathway. Here we reach a unifying picture
of the ultrafast energy relaxation by investigating the terahertz
photoconductivity, while varying the Fermi energy, photon energy, and fluence
over a wide range. We find that sufficiently low fluence ( 4
J/cm) in conjunction with sufficiently high Fermi energy (
0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier
scattering, which leads to efficient carrier heating. Upon increasing the
fluence or decreasing the Fermi energy, the carrier heating efficiency
decreases, presumably due to energy relaxation that becomes increasingly
dominated by phonon emission. Carrier heating through carrier-carrier
scattering accounts for the negative photoconductivity for doped graphene
observed at terahertz frequencies. We present a simple model that reproduces
the data for a wide range of Fermi levels and excitation energies, and allows
us to qualitatively assess how the branching ratio between the two distinct
relaxation pathways depends on excitation fluence and Fermi energy.Comment: Nano Letters 201
- …
