3,501 research outputs found
Riverine transfer of heavy metals from Patagonia to the southwestern Atlantic Ocean
The occurrence and geochemical behaviour of Fe, Mn, Pb, Cu, Ni, Cr, Zn and Co are studied in riverine detrital materials transported by Patagonian rivers. Their riverine inputs have been estimated and the nature of these inputs to the Atlantic Ocean is discussed. Most of the metals are transported to the ocean via the suspended load; there is evidence that Fe oxides and organic matter are important phases controlling their distribution in the detrital non-residual fraction. Most heavy metal concentrations found in bed sediments, in suspended matter, and in the dissolved load of Patagonian rivers were comparable to those reported for non-polluted rivers. There is indication that human activity is altering riverine metal inputs to the ocean. In the northern basins – and indicatinganthropogenic effects – heavy metals distribution in the suspended load is very different from that found in bed sediments. The use of pesticides in the Negro River valley seems correlated with increased riverine input of Cu, mostly bound to the suspended load. The Deseado and Chico Rivers exhibit increased specific yield of metals as a consequence of extended erosion within their respective basins. The Santa Cruz is the drainage basin least affected by human activity and its metal-exporting capacity should be taken as an example of a relatively unaffected large hydrological system. In contrast, coal mining modifies the transport pattern of heavy metals in the Gallegos River, inasmuch as they are exported to the coastal zone mainly as dissolved load
A Frequency Comb calibrated Solar Atlas
The solar spectrum is a primary reference for the study of physical processes
in stars and their variation during activity cycles. In Nov 2010 an experiment
with a prototype of a Laser Frequency Comb (LFC) calibration system was
performed with the HARPS spectrograph of the 3.6m ESO telescope at La Silla
during which high signal-to-noise spectra of the Moon were obtained. We exploit
those Echelle spectra to study the optical integrated solar spectrum . The
DAOSPEC program is used to measure solar line positions through gaussian
fitting in an automatic way. We first apply the LFC solar spectrum to
characterize the CCDs of the HARPS spectrograph. The comparison of the LFC and
Th-Ar calibrated spectra reveals S-type distortions on each order along the
whole spectral range with an amplitude of +/-40 m/s. This confirms the pattern
found by Wilken et al. (2010) on a single order and extends the detection of
the distortions to the whole analyzed region revealing that the precise shape
varies with wavelength. A new data reduction is implemented to deal with CCD
pixel inequalities to obtain a wavelength corrected solar spectrum. By using
this spectrum we provide a new LFC calibrated solar atlas with 400 line
positions in the range of 476-530, and 175 lines in the 534-585 nm range. The
new LFC atlas improves the accuracy of individual lines by a significant factor
reaching a mean value of about 10 m/s. The LFC--based solar line wavelengths
are essentially free of major instrumental effects and provide a reference for
absolute solar line positions. We suggest that future LFC observations could be
used to trace small radial velocity changes of the whole solar photospheric
spectrum in connection with the solar cycle and for direct comparison with the
predicted line positions of 3D radiative hydrodynamical models of the solar
photosphere.Comment: Accept on the 15th of October 2013. 9 pages, 10 figures. ON-lINE data
A&A 201
Comb-calibrated solar spectroscopy through a multiplexed single-mode fiber channel
We investigate a new scheme for astronomical spectrograph calibration using
the laser frequency comb at the Solar Vacuum Tower Telescope on Tenerife. Our
concept is based upon a single-mode fiber channel, that simultaneously feeds
the spectrograph with comb light and sunlight. This yields nearly perfect
spatial mode matching between the two sources. In combination with the absolute
calibration provided by the frequency comb, this method enables extremely
robust and accurate spectroscopic measurements. The performance of this scheme
is compared to a sequence of alternating comb and sunlight, and to absorption
lines from Earth's atmosphere. We also show how the method can be used for
radial-velocity detection by measuring the well-explored 5-minute oscillations
averaged over the full solar disk. Our method is currently restricted to solar
spectroscopy, but with further evolving fiber-injection techniques it could
become an option even for faint astronomical targets.Comment: 21 pages, 11 figures. A video abstract for this paper is available on
youtube. For watching the video, please follow
https://www.youtube.com/watch?v=oshdZgrt89I . The video abstract is also
available for streaming and download on the related article website of New
Journal of Physic
Group-Based Parent Training Interventions for Parents of Children with Autism Spectrum Disorders: a Literature Review
© 2018, Springer Science+Business Media, LLC, part of Springer Nature. Parents of children with autism spectrum disorders should have access to interventions to help them understand and support their child. This literature review examines the existing evidence for group-based parent training interventions that support parents of children with autism. From the literature, core intervention processes and outcomes are identified and include parenting and parent behaviour, parent health, child behaviour and peer and social support. Results show a positive trend for intervention effectiveness, but findings are limited by low-quality studies and heterogeneity of intervention content, outcomes and outcome measurement. Future research should focus on specifying effective intervention ingredients and modes of delivery, consistent and reliable outcome measurement, and improving methodological rigour to build a more robust evidence base
Innovative Conservation Agriculture Approaches: Food Security and Climate Action through Soil and Water Conservation (INCAA)
The crucial challenge for smallholder farmers in sub-Saharan Africa is feeding a growing population while preserving the natural resource base of the agricultural system. In future, this challenge will be exacerbated by soil degradation and climate change. Conservation Agriculture (CA) has been promoted as a strategy that can improve yields, soils and effective water use. CA thus has potential to increase the resilience of farming systems facing the mentioned challenges.
However, CA since its introduction in sub-Sahara Africa has not moved from the invention to the innovation stage: the CA innovation seen as a package is not meeting the farmers’ needs, capabilities and opportunities. Overall, the attempt to transfer this innovation in a conventional linear way from science to farm has been disappointing.
The INCAA project is designed as an action research process aimed at targeting the challenging (and often missing) interfaces of science-driven technology and local realities in innovation systems. The overall objective of INCAA is to mentor and analyse a learning process that supports the innovation of CA in sub-Saharan Africa. The case studies of the project are Laikipia County, Kenya and Koumbia District, Burkina Faso. Building on the experiences of past projects, INCAA will (1) map benefits and adaptations of CA in innovation systems around the partner projects; (2) foster joined learning of stakeholders to test and validate CA tools; and (3) develop learning strategies for an innovation process towards CA including institutional and individual dimensions.
This project will start from those who take the final decision on the fate of CA - the farmers.
By assessing how farmers have actually adapted and implemented CA, we can derive lessons on the benefits and losses related to such CA modes for all stakeholders involved in the agricultural system. This contribution will 1) introduce the overall conceptual, methodological and structural design of the project and 2) highlight its first preliminary results which so far show high influence of gender aspects towards the adoption decision process. Differing roles of and expectations towards men and women within the farming communities are often an invisible obstacle for further adoption of CA
Microbial Community Structures of Novel Icelandic Hot Spring Systems Revealed by PhyloChip G3 Analysis
Microbial community profiles of recently formed hot spring systems ranging in temperatures from 57°C to 100°C and pH values from 2 to 4 in Hveragerði (Iceland) were analyzed with PhyloChip G3 technology. In total, 1173 bacterial operational taxonomic units (OTUs) spanning 576 subfamilies and 38 archaeal OTUs covering 32 subfamilies were observed. As expected, the hyperthermophilic (100°C) spring system exhibited both low microbial biomass and diversity when compared to thermophilic (60°C) springs. Ordination analysis revealed distinct bacterial and archaeal diversity in geographically distinct hot springs. Slight variations in temperature (from 57°C to 64°C) within the interconnected pools led to a marked fluctuation in microbial abundance and diversity. Correlation and PERMANOVA tests provided evidence that temperature was the key environmental factor responsible for microbial community dynamics, while pH, H_(2)S, and SO_2 influenced the abundance of specific microbial groups. When archaeal community composition was analyzed, the majority of detected OTUs correlated negatively with temperature, and few correlated positively with pH. Key Words: Microbial diversity—PhyloChip G3—Acidophilic—Thermophilic—Hot springs—Iceland. Astrobiology 14, xxx–xxx
A mesocosm experiment investigating the effects of substratum quality and wave exposure on the survival of fish eggs
In a mesocosm experiment, the attachment of bream (Abramis brama) eggs to spawning substrata with and without periphytic biofilm coverage and their subsequent survival with and without low-intensity wave exposure were investigated. Egg attachment was reduced by 73% on spawning substrata with a natural periphytic biofilm, compared to clean substrata. Overall, this initial difference in egg numbers persisted until hatching. The difference in egg numbers was even increased in the wave treatment, while it was reduced in the no-wave control treatment. Exposure to a low-intensity wave regime affected egg development between the two biofilm treatments differently. Waves enhanced egg survival on substrata without a biofilm but reduced the survival of eggs on substrata with biofilm coverage. In the treatment combining biofilm-covered substrata and waves, no attached eggs survived until hatching. In all treatments, more than 75% of the eggs became detached from the spawning substrata during the egg incubation period, an
Isabelle Modelchecking for insider threats
The Isabelle Insider framework formalises the technique of social explanation for modeling and analysing Insider threats in infrastructures including physical and logical aspects. However, the abstract Isabelle models need some refinement to provide sufficient detail to explore attacks constructively and understand how the attacker proceeds. The introduction of mutable states into the model leads us to use the concepts of Modelchecking within Isabelle. Isabelle can simply accommodate classical CTL type Modelchecking. We integrate CTL Modelchecking into the Isabelle Insider framework. A running example of an IoT attack on privacy motivates the method throughout and illustrates how the enhanced framework fully supports realistic modeling and analysis of IoT Insiders
- …
