481 research outputs found

    How to measure redshift-space distortions without sample variance

    Full text link
    We show how to use multiple tracers of large-scale density with different biases to measure the redshift-space distortion parameter beta=f/b=(dlnD/dlna)/b (where D is the growth rate and a the expansion factor), to a much better precision than one could achieve with a single tracer, to an arbitrary precision in the low noise limit. In combination with the power spectrum of the tracers this allows a much more precise measurement of the bias-free velocity divergence power spectrum, f^2 P_m - in fact, in the low noise limit f^2 P_m can be measured as well as would be possible if velocity divergence was observed directly, with rms improvement factor ~[5.2(beta^2+2 beta+2)/beta^2]^0.5 (e.g., ~10 times better than a single tracer for beta=0.4). This would allow a high precision determination of f D as a function of redshift with an error as low as 0.1%. We find up to two orders of magnitude improvement in Figure of Merit for the Dark Energy equation of state relative to Stage II, a factor of several better than other proposed Stage IV Dark Energy surveys. The ratio b_2/b_1 will be determined with an even greater precision than beta, producing, when measured as a function of scale, an exquisitely sensitive probe of the onset of non-linear bias. We also extend in more detail previous work on the use of the same technique to measure non-Gaussianity. Currently planned redshift surveys are typically designed with signal to noise of unity on scales of interest, and are not optimized for this technique. Our results suggest that this strategy may need to be revisited as there are large gains to be achieved from surveys with higher number densities of galaxies.Comment: 22 pages, 13 figure

    Sterile neutrinos as subdominant warm dark matter

    Get PDF
    In light of recent findings which seem to disfavor a scenario with (warm) dark matter entirely constituted of sterile neutrinos produced via the Dodelson-Widrow (DW) mechanism, we investigate the constraints attainable for this mechanism by relaxing the usual hypothesis that the relic neutrino abundance must necessarily account for all of the dark matter. We first study how to reinterpret the limits attainable from X-ray non-detection and Lyman-alpha forest measurements in the case that sterile neutrinos constitute only a fraction fs of the total amount of dark matter. Then, assuming that sterile neutrinos are generated in the early universe solely through the DW mechanism, we show how the X-ray and Lyman-alpha results jointly constrain the mass-mixing parameters governing their production. Furthermore, we show how the same data allow us to set a robust upper limit fs < 0.7 at the 2 sigma level, rejecting the case of dominant dark matter (fs = 1) at the ~ 3 sigma level.Comment: Minor changes; added references; version accepted for publication in Phys. Rev.

    Alignment of galaxy spins in the vicinity of voids

    Full text link
    We provide limits on the alignment of galaxy orientations with the direction to the void center for galaxies lying near the edges of voids. We locate spherical voids in volume limited samples of galaxies from the Sloan Digital Sky Survey using the HB inspired void finder and investigate the orientation of (color selected) spiral galaxies that are nearly edge-on or face-on. In contrast with previous literature, we find no statistical evidence for departure from random orientations. Expressed in terms of the parameter c, introduced by Lee & Pen to describe the strength of such an alignment, we find that c<0.11(0.13) at 95% (99.7%) confidence limit within a context of a toy model that assumes a perfectly spherical voids with sharp boundaries.Comment: 8 pages, 4 figures; v2 discussion expanded, references fixed, matches version accepted by JCA

    Relative velocity of dark matter and baryonic fluids and the formation of the first structures

    Get PDF
    At the time of recombination, baryons and photons decoupled and the sound speed in the baryonic fluid dropped from relativistic to the thermal velocities of the hydrogen atoms. This is less than the relative velocities of baryons and dark matter computed via linear perturbation theory, so we infer that there are supersonic coherent flows of the baryons relative to the underlying potential wells created by the dark matter. As a result, the advection of small-scale perturbations (near the baryonic Jeans scale) by large-scale velocity flows is important for the formation of the first baryonic structures. This effect involves a quadratic term in the cosmological perturbation theory equations and hence has not been included in studies based on linear perturbation theory. We show that the relative motion suppresses the abundance of the first bound objects, even if one only investigates dark matter haloes, and leads to qualitative changes in their spatial distribution, such as introducing scale-dependent bias and stochasticity. We discuss the possible observable implications for high-redshift galaxy clustering and reionization

    Scale-dependent bias from primordial non-Gaussianity in general relativity

    Get PDF
    In this note we examine the derivation of scale-dependent bias due to primordial non-Gaussianity of the local type in the context of general relativity. We justify the use of the Poisson equation in general relativistic perturbation theory and thus the derivation of scale-dependent bias as a test of primordial non-Gaussianity, using the spherical collapse model. The corollary is that the form of scale-dependent bias does not receive general relativistic corrections on scales larger than the Hubble radius. This leads to a formally divergent correlation function for biased tracers of the mass distribution which we discuss.Comment: 6 pages; v2: added discussion of bias and spherical collapse in the longitudinal gauge; matches version accepted to PR

    Galaxy Groups in the SDSS DR4: II. halo occupation statistics

    Full text link
    We investigate various halo occupation statistics using a large galaxy group catalogue constructed from the SDSS DR4 with an adaptive halo-based group finder. The conditional luminosity function (CLF) is measured separately for all, red and blue galaxies, as well as in terms of central and satellite galaxies. The CLFs for central and satellite galaxies can be well modelled with a log-normal distribution and a modified Schechter form, respectively. About 85% of the central galaxies and about 80% of the satellite galaxies in halos with masses M_h\ga 10^{14}\msunh are red galaxies. These numbers decrease to 50% and 40%, respectively, in halos with M_h \sim 10^{12}\msunh. For halos of a given mass, the distribution of the luminosities of central galaxies, LcL_c, has a dispersion of about 0.15 dex. The mean luminosity (stellar mass) of the central galaxies scales with halo mass as LcMh0.17L_c\propto M_h^{0.17} (M,cMh0.22M_{*,c}\propto M_h^{0.22}) for halos with masses M\gg 10^{12.5}\msunh, and both relations are significantly steeper for less massive halos. We also measure the luminosity (stellar mass) gap between the first and second brightest (most massive) member galaxies, logL1logL2\log L_1 - \log L_2 (logM,1logM,2\log M_{*,1}-\log M_{*,2}). These gap statistics, especially in halos with M_h \la 10^{14.0}\msunh, indicate that the luminosities of central galaxies are clearly distinct from those of their satellites. The fraction of fossil groups, defined as those groups with logL1logL20.8\log L_1 - \log L_2\ge 0.8, ranges from 2.5\sim 2.5% for groups with M_h\sim 10^{14}\msunh to 18-60% for groups with M_h\sim 10^{13}\msunh. Finally, we measure the fraction of satellites, which changes from 5.0\sim 5.0% for galaxies with \rmag\sim -22.0 to 40\sim40% for galaxies with \rmag\sim -17.0. (abridged)Comment: 16 pages, 11 figures. Accepted for publication in Ap

    Detection of Baryon Acoustic Oscillation Features in the Large-Scale 3-Point Correlation Function of SDSS BOSS DR12 CMASS Galaxies

    Full text link
    We present the large-scale 3-point correlation function (3PCF) of the SDSS DR12 CMASS sample of 777,202777,202 Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance (4.5σ4.5\sigma) detection of Baryon Acoustic Oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to z=0.57z=0.57 to 1.7%1.7\% precision (statistical plus systematic). We find DV=2024±29  Mpc  (stat)±20  Mpc  (sys)D_{\rm V}= 2024\pm29\;{\rm Mpc\;(stat)}\pm20\;{\rm Mpc\;(sys)} for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from the 2-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10\%; reconstruction appears to lower the independence of the distance measurements. Fitting a model including tidal tensor bias yields a moderate significance (2.6σ)2.6\sigma) detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.Comment: 15 pages, 7 figures, submitted MNRA

    Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies

    Get PDF
    ‘The definitive version is available at www3.interscience.wiley.com '. Copyright Royal Astronomical Society. DOI: 10.1111/j.1365-2966.2009.15383.xWe investigate a class of rapidly growing emission line galaxies, known as 'Green Peas', first noted by volunteers in the Galaxy Zoo project because of their peculiar bright green colour and small size, unresolved in Sloan Digital Sky Survey imaging. Their appearance is due to very strong optical emission lines, namely [O iii]λ5007 Å, with an unusually large equivalent width of up to ∼1000 Å. We discuss a well-defined sample of 251 colour-selected objects, most of which are strongly star forming, although there are some active galactic nuclei interlopers including eight newly discovered narrow-line Seyfert 1 galaxies. The star-forming Peas are low-mass galaxies (M∼ 108.5–1010 M⊙) with high star formation rates (∼10 M⊙ yr−1) , low metallicities (log[O/H]+ 12 ∼ 8.7) and low reddening [ E(B−V) ≤ 0.25 ] and they reside in low-density environments. They have some of the highest specific star formation rates (up to ∼10−8 yr−1 ) seen in the local Universe, yielding doubling times for their stellar mass of hundreds of Myr. The few star-forming Peas with Hubble Space Telescope imaging appear to have several clumps of bright star-forming regions and low surface density features that may indicate recent or ongoing mergers. The Peas are similar in size, mass, luminosity and metallicity to luminous blue compact galaxies. They are also similar to high-redshift ultraviolet-luminous galaxies, e.g. Lyman-break galaxies and Lyα emitters, and therefore provide a local laboratory with which to study the extreme star formation processes that occur in high-redshift galaxies. Studying starbursting galaxies as a function of redshift is essential to understanding the build up of stellar mass in the Universe.Peer reviewe
    corecore