38 research outputs found

    Glutamine synthetase in human carotid plaque macrophages associates with features of plaque vulnerability : An immunohistological study

    Get PDF
    Publisher Copyright: © 2022 The AuthorsBackground and aims: Glutamine synthetase (GLUL), the sole generator of glutamine, is a metabolic nexus molecule also involved in atherosclerosis. We recently demonstrated a 2.2-fold upregulation of GLUL mRNA in stroke-causing carotid plaques when compared with plaques from asymptomatic patients. Here we compared in the same cohort GLUL mRNA expression with plaque gross morphology, and the colocalization of immunodetectable GLUL protein with histopathological changes and molecular and mechanical mediators linked to plaque development. Methods: Endarterectomy specimens from 19 asymptomatic and 24 stroke patients were sectioned longitudinally and immunostained for GLUL, CD68, α-smooth muscle actin, iron, heme oxygenase-1 and CD163, and graded semiquantitatively in every 1 mm2. The amounts of cholesterol clefts and erythrocytes were graded. The fibrous cap thickness within each 1 mm2 area was measured. The association between the local pathological findings was analyzed by a hierarchical mixed modelling approach. Results: The previously found correlation between GLUL mRNA and clinical symptomatology was supported by the increased GLUL mRNA in diseased tissue and increased local GLUL immunoreactivity in areas with multiple different atherosclerotic changes. A longer symptom-to-operation time correlated with lower GLUL mRNA (Rs = −0.423, p=0.050) but few outliers had a significantly higher GLUL mRNA levels, which persisted throughout the post-symptomatic period. Plaque ulceration associated with 1.8-fold higher GLUL mRNA (p=0.006). Macrophages were the main GLUL immunoreactive cells. GLUL immunostaining colocalized with erythrocytes, iron, CD163, and heme oxygenase-1. The correlations between local variables were consistent in both asymptomatic and stroke-causing plaques. An inverse correlation was found between the fibrous cap thickness and local GLUL immunoreactivity (p=0.012). Considerable variability in interplaque expression pattern of GLUL was present. Conclusions: Our results link connect macrophage GLUL expression with carotid plaque features characterizing plaque vulnerability.Peer reviewe

    The Low-Expression Variant of FABP4 Is Associated With Cardiovascular Disease in Type 1 Diabetes

    Get PDF
    Fatty acid binding protein 4 (FABP4) is implicated in the pathogenesis of cardiometabolic disorders. Pharmacological inhibition or genetic deletion of FABP4 improves cardiometabolic health and protects against atherosclerosis in preclinical models. As cardiovascular disease (CVD) is common in type 1 diabetes, we examined the role of FABP4 in the development of complications in type 1 diabetes, focusing on a functional, low-expression variant (rs77878271) in the promoter of the FABP4 gene. For this, we assessed the risk of CVD, stroke, coronary artery disease (CAD), end-stage kidney disease, and mortality using Cox proportional hazards models for the FABP4 rs77878271 in 5,077 Finnish individuals with type 1 diabetes. The low-expression G allele of rs77878271 increased the risk of CVD, independent of confounders. Findings were tested for replication in 852 Danish and 3,678 Finnish individuals with type 1 diabetes. In the meta-analysis, each G allele increased the risk of stroke by 26% (P = 0.04), CAD by 26% (P = 0.006), and CVD by 17% (P = 0.003). In Mendelian randomization, a 1-SD unit decrease in FABP4 increased risk of CAD 2.4-fold. Hence, in contrast with the general population, among patients with type 1 diabetes the low-expression G allele of rs77878271 increased CVD risk, suggesting that genetically low FABP4 levels may be detrimental in the context of type 1 diabetes.Peer reviewe

    Morphology and histology of silent and symptom-causing atherosclerotic carotid plaques - Rationale and design of the Helsinki Carotid Endarterectomy Study 2 (the HeCES2)

    Get PDF
    Introduction: Every fifth ischemic stroke is caused by thromboembolism originating from an atherosclerotic carotid artery plaque. While prevention is the most cost-effective stroke therapy, antiplatelet and cholesterol-lowering drugs have a ceiling effect in their efficacy. Therefore, discovery of novel pathophysiologic targets are needed to improve the primary and secondary prevention of stroke. This article provides a detailed study design and protocol of HeCES2, an observational prospective cohort study with the objective to investigate the pathophysiology of carotid atherosclerosis.Materials and Methods: Recruitment and carotid endarterectomies of the study patients with carotid atherosclerosis were performed from October 2012 to September 2015. After brain and carotid artery imaging, endarterectomised carotid plaques (CPs) and blood samples were collected from 500 patients for detailed biochemical and molecular analyses.Findings to date: We developed a morphological grading for macroscopic characteristics within CPs. The dominant macroscopic CP characteristics were: smoothness 62%, ulceration 61%, intraplaque hemorrhage 60%, atheromatous gruel 59%, luminal coral-type calcification 34%, abundant (44%) and moderate (39%) intramural calcification, and symptom-causing hot spot area 53%.Future plans: By combining clinically oriented and basic biomedical research, this large-scale study attempts to untangle the pathophysiological perplexities of human carotid atherosclerosis.Key MessagesThis article is a rationale and design of the HeCES2 study that is an observational prospective cohort study with the objective to investigate the pathophysiology of carotid atherosclerosis.The HeCES2 study strives to develop diagnostic algorithms including radiologic imaging to identify carotid atherosclerosis patients who warrant surgical treatment.In addition, the study aims at finding out new tools for clinical risk stratification as well as novel molecular targets for drug development.Peer reviewe

    Extracellular Lipids Accumulate in Human Carotid Arteries as Distinct Three-Dimensional Structures and Have Proinflammatory Properties

    Get PDF
    Lipid accumulation is a key characteristic of advancing atherosclerotic lesions. Herein, we analyzed the ultrastructure of the accumulated Lipids in endarterectomized human carotid atherosclerotic plaques using three-dimensional (3D) electron microscopy, a method never used in this context before. 3D electron microscopy revealed intracellular lipid droplets and extracellular Lipoprotein particles. Most of the particles were aggregated, and some connected to needle-shaped or sheet-like cholesterol crystals. Proteomic analysis of isolated extracellular Lipoprotein particles revealed that apolipoprotein B is their main protein component, indicating their origin from low-density lipoprotein, intermediate-density Lipoprotein, very-Low-density lipoprotein, lipoprotein (a), or chylomicron remnants. The particles also contained small exchangeable apolipoproteins, complement components, and immunoglobulins. Lipidomic analysis revealed differences between plasma lipoproteins and the particles, thereby indicating involvement of lipolytic enzymes in their generation. Incubation of human monocyte-derived macrophages with the isolated extracellular lipoprotein particles or with plasma lipoproteins that had been Lipolytically modified in vitro induced intracellular Lipid accumulation and triggered inflammasome activation in them. Taken together, extracellular Lipids accumulate in human carotid plaques as distinct 3D structures that include aggregated and fused lipoprotein particles and cholesterol crystals. The particles originate from plasma lipoproteins, show signs of lipolytic modifications, and associate with cholesterol crystals. By inducing intracellular cholesterol accumulation (ie, foam cell formation) and inflammasome activation, the extracellular lipoprotein particles may actively enhance atherogenesis.Peer reviewe

    Gene expression differences between stroke-associated and asymptomatic carotid plaques

    Get PDF
    Atherosclerotic carotid stenosis is an important risk factor for stroke. Carotid plaques (CPs) causing stroke may present a distinct type of molecular pathology compared with transient ischemic attack (TIA)-associated or asymptomatic plaques. We compared the gene expression profiles of CPs from stroke patients (n = 12) and asymptomatic patients (n = 9), both with similar risk factors and severity of carotid stenosis (>70%). Sixty probes showed over 1.5-fold expression difference at 5% false discovery rate. Functional clustering showed enrichment of genes in 51 GO categories and seven pathways, the most significant of which relate to extracellular-matrix interaction, PPAR gamma signaling, scavanger receptor activity, and lysosomal activity. Differential expression of ten genes was confirmed in an extended replication group (n = 43), where the most significant expression differences were found in CD36 (2.1-fold change, p = 0.005), CD163 (1.7-fold change, p = 0.007) and FABP4 (2.2-fold change, p = 0.015). These include four genes not previously linked to plaque destabilization: GLUL (2.2-fold change, p = 0.016), FUCA1 (2.2-fold change, p = 0.025), IL1RN (1.6-fold change, p = 0.034), and S100A8 (2.5-fold change, p = 0.047). Strong correlations were found to plaque ulceration, plaque hemorrhage, and markers of apoptosis and proliferation (activated caspase 3, TUNEL, and Ki67). Protein expression of these genes was confirmed by immunohistochemistry and was found in the atheromatous areas of CPs critical for plaque destabilization. This study presents a comprehensive transcriptional analysis of stroke-associated CPs and demonstrates a significant transcriptome difference between stroke-associated and asymptomatic CPs. Follow-up studies on the identified genes are needed to define whether they could be used as biomarkers of symptomatic CPs or have a role in plaque destabilization

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Warfarin Treatment Is Associated to Increased Internal Carotid Artery Calcification

    Get PDF
    Background: Long-term treatment with the vitamin K antagonist warfarin is widely used for the prevention of venous thrombosis and thromboembolism. However, vitamin K antagonists may promote arterial calcification, a phenomenon that has been previously studied in coronary and peripheral arteries, but not in extracranial carotid arteries. In this observational cohort study, we investigated whether warfarin treatment is associated with calcification of atherosclerotic carotid arteries. Methods: Overall, 500 consecutive patients underwent carotid endarterectomy, 82 of whom had received long-term warfarin therapy. The extent of calcification was assessed with preoperative computed tomography angiography, and both macroscopic morphological grading and microscopic histological examination of each excised carotid plaque were performed after carotid endarterectomy. Results: Compared with non-users, warfarin users had significantly more computed tomography angiography-detectable vascular calcification in the common carotid arteries (odds ratio 2.64, 95% confidence interval 1.51-4.63, P < 0.001) and even more calcification in the internal carotid arteries near the bifurcation (odds ratio 18.27, 95% confidence interval 2.53-2323, P < 0.001). Histological analysis revealed that the intramural calcified area in plaques from warfarin users was significantly larger than in plaques from non-users (95% confidence interval 3.36-13.56, P = 0.0018). Conclusions: Long-lasting warfarin anticoagulation associated with increased calcification of carotid atherosclerotic plaques, particularly in locations known to be the predilection sites of stroke-causing plaques. The clinical significance of this novel finding warrants further investigations.Peer reviewe
    corecore