52 research outputs found
Recommended from our members
The genetic basis of a social polymorphism in halictid bees
The emergence of eusociality represents a major evolutionary transition from solitary to group reproduction. The most commonly studied eusocial species, honey bees and ants, represent the behavioral extremes of social evolution but lack close relatives that are non-social. Unlike these species, the halictid bee Lasioglossum albipes produces both solitary and eusocial nests and this intraspecific variation has a genetic basis. Here, we identify genetic variants associated with this polymorphism, including one located in the intron of syntaxin 1a (syx1a), a gene that mediates synaptic vesicle release. We show that this variant can alter gene expression in a pattern consistent with differences between social and solitary bees. Surprisingly, syx1a and several other genes associated with sociality in L. albipes have also been implicated in autism spectrum disorder in humans. Thus, genes underlying behavioral variation in L. albipes may also shape social behaviors across a wide range of taxa, including humans
Cryptic plasticity underlies a major evolutionary transition
The origin of eusociality is often regarded as a change of macroevolutionary proportions [[1] and [2]]. Its hallmark is a reproductive division of labor between the members of a society: some individuals (¿helpers¿ or ¿workers¿) forfeit their own reproduction to rear offspring of others (¿queens¿). In the Hymenoptera (ants, bees, wasps), there have been many transitions in both directions between solitary nesting and sociality [[2], [3], [4] and [5]]. How have such transitions occurred? One possibility is that multiple transitions represent repeated evolutionary gains and losses of the traits underpinning sociality. A second possibility, however, is that once sociality has evolved, subsequent transitions represent selection at just one or a small number of loci controlling developmental switches between preexisting alternative phenotypes [[2] and [6]]. We might then expect transitional populations that can express either sociality or solitary nesting, depending on environmental conditions. Here, we use field transplants to directly induce transitions in British and Irish populations of the sweat bee Halictus rubicundus. Individual variation in social phenotype was linked to time available for offspring production, and to the genetic benefits of sociality, suggesting that helping was not simply misplaced parental care [7]. We thereby demonstrate that sociality itself can be truly plastic in a hymenopteran
- …