443 research outputs found
Intrinsic peculiarities of real material realizations of a spin-1/2 kagome lattice
Spin-1/2 magnets with kagome geometry, being for years a generic object of
theoretical investigations, have few real material realizations. Recently, a
DFT-based microscopic model for two such materials, kapellasite Cu3Zn(OH)6Cl2
and haydeeite Cu3Mg(OH)6Cl2, was presented [O. Janson, J. Richter and H.
Rosner, arXiv:0806.1592]. Here, we focus on the intrinsic properties of real
spin-1/2 kagome materials having influence on the magnetic ground state and the
low-temperature excitations. We find that the values of exchange integrals are
strongly dependent on O--H distance inside the hydroxyl groups, present in most
spin-1/2 kagome compounds up to date. Besides the original kagome model,
considering only the nearest neighbour exchange, we emphasize the crucial role
of the exchange along the diagonals of the kagome lattice.Comment: 4 pages, 4 figures. A paper for the proceedings of the HFM 2008
conferenc
Using microsatellites to obtain genetic structure data for Red-backed shrike (Lanius collurio) : a pilot study
Contains fulltext :
33090.pdf (publisher's version ) (Open Access
Fracture Propagation Driven by Fluid Outflow from a Low-permeability Aquifer
Deep saline aquifers are promising geological reservoirs for CO2
sequestration if they do not leak. The absence of leakage is provided by the
caprock integrity. However, CO2 injection operations may change the
geomechanical stresses and cause fracturing of the caprock. We present a model
for the propagation of a fracture in the caprock driven by the outflow of fluid
from a low-permeability aquifer. We show that to describe the fracture
propagation, it is necessary to solve the pressure diffusion problem in the
aquifer. We solve the problem numerically for the two-dimensional domain and
show that, after a relatively short time, the solution is close to that of
one-dimensional problem, which can be solved analytically. We use the relations
derived in the hydraulic fracture literature to relate the the width of the
fracture to its length and the flux into it, which allows us to obtain an
analytical expression for the fracture length as a function of time. Using
these results we predict the propagation of a hypothetical fracture at the In
Salah CO2 injection site to be as fast as a typical hydraulic fracture. We also
show that the hydrostatic and geostatic effects cause the increase of the
driving force for the fracture propagation and, therefore, our solution serves
as an estimate from below. Numerical estimates show that if a fracture appears,
it is likely that it will become a pathway for CO2 leakage.Comment: 21 page
Elementary excitations, exchange interaction and spin-Peierls transition in CuGeO
The microscopic description of the spin-Peierls transition in pure and doped
CuGeO_3 is developed taking into account realistic details of crystal
structure. It it shown that the presence of side-groups (here Ge) strongly
influences superexchange along Cu-O-Cu path, making it antiferromagnetic.
Nearest-neighbour and next-nearest neighbour exchange constants and
are calculated. Si doping effectively segments the CuO_2-chains
leading to or even slightly ferromagnetic. Strong
sensitivity of the exchange constants to Cu-O-Cu and (Cu-O-Cu)-Ge angles may be
responsible for the spin-Peierls transition itself (``bond-bending mechanism''
of the transition). The nature of excitations in the isolated and coupled
spin-Peierls chains is studied and it is shown that topological excitations
(solitons) play crucial role. Such solitons appear in particular in doped
systems (Cu_{1-x}Zn_xGeO_3, CuGe_{1-x}Si_xO_3) which can explain the
phase diagram.Comment: 7 pages, revtex, 7 Postscript figure
Finite Temperature DMRG Investigation of the Spin-Peierls Transition in CuGeO
We present a numerical study of thermodynamical properties of dimerized
frustrated Heisenberg chains down to extremely low temperatures with
applications to CuGeO. A variant of the finite temperature density matrix
renormalization group (DMRG) allows the study of the dimerized phase previously
unaccessible to ab initio calculations. We investigate static dimerized systems
as well as the instability of the quantum chain towards lattice dimerization.
The crossover from a quadratic response in the free energy to the distortion
field at finite temperature to nonanalytic behavior at zero temperature is
studied quantitatively. Various physical quantities are derived and compared
with experimental data for CuGeO such as magnetic dimerization, critical
temperature, susceptibility and entropy.Comment: LaTeX, 5 pages, 5 eps figures include
Anisotropic Superexchange for nearest and next nearest coppers in chain, ladder and lamellar cuprates
We present a detailed calculation of the magnetic couplings between
nearest-neighbor and next-nearest-neighbor coppers in the edge-sharing
geometry, ubiquitous in many cuprates. In this geometry, the interaction
between nearest neighbor coppers is mediated via two oxygens, and the Cu-O-Cu
angle is close to 90 degrees. The derivation is based on a perturbation
expansion of a general Hubbard Hamiltonian, and produces numerical estimates
for the various magnetic energies. In particular we find the dependence of the
anisotropy energies on the angular deviation away from the 90 degrees geometry
of the Cu-O-Cu bonds. Our results are required for the correct analysis of the
magnetic structure of various chain, ladder and lamellar cuprates.Comment: 13 pages, Latex, 7 figure
Field-induced structural evolution in the spin-Peierls compound CuGeO: high-field ESR study
The dimerized-incommensurate phase transition in the spin-Peierls compound
CuGeO is probed using multifrequency high-resolution electron spin
resonance (ESR) technique, in magnetic fields up to 17 T. A field-induced
development of the soliton-like incommensurate superstructure is clearly
indicated as a pronounced increase of the ESR linewidth (magnon
excitations), with a at 13.8 T. The anomaly is
explained in terms of the magnon-soliton scattering, and suggests that the
soliton-like phase exists close to the boundary of the dimerized-incommensurate
phase transition. In addition, magnetic excitation spectra in 0.8% Si-doped
CuGeO are studied. Suppression of the anomaly observed in the
doped samples suggests a collapse of the long-range-ordered soliton states upon
doping, that is consistent with high-field neutron scattering experiments.Comment: Accepted to Phys. Rev.
Characterizing the differential distribution and targets of Sumo paralogs in the mouse brain
SUMOylation is an evolutionarily conserved and essential mechanism whereby Small Ubiquitin Like Modifiers, or SUMO proteins (Sumo in mice), are covalently bound to protein substrates in a highly dynamic and reversible manner. SUMOylation is involved in a variety of basic neurological processes including learning and memory, and central nervous system development, but is also linked with neurological disorders. However, studying SUMOylation in vivo remains challenging due to limited tools to study Sumo proteins and their targets in their native context. More complexity arises from the fact that Sumo1 and Sumo2 are ∼50% homologous, whereas Sumo2 and Sumo3 are nearly identical and indistinguishable with antibodies. While Sumo paralogues can compensate for one another’s loss, Sumo2 is highest expressed and only paralog essential for embryonic development making it critical to uncover roles specific to Sumo2 in vivo. To further examine the roles of Sumo2, and to begin to tease apart the redundancy and similarity between key Sumo paralogs, we generated (His6-)HA epitope-tagged Sumo2 knock-in mouse alleles, expanding the current Sumo knock-in mouse tool-kit comprising of the previously generated His6-HA-Sumo1 knock-in model. Using these HA-Sumo mouse lines, we performed whole brain imaging and mapping to the Allen Brain Atlas to analyze the relative distribution of the Sumo1 and Sumo2 paralogues in the adult mouse brain. We observed differential staining patterns between Sumo1 and Sumo2, including a partial localization of Sumo2 in nerve cell synapses of the hippocampus. Combining immunoprecipitation with mass spectrometry, we identified native substrates targeted by Sumo1 or Sumo2 in the mouse brain. We validated select hits using proximity ligation assays, further providing insight into the subcellular distribution of neuronal Sumo2-conjugates. These mouse models thus serve as valuable tools to study the cellular and biochemical roles of SUMOylation in the central nervous system
SNPExpress: integrated visualization of genome-wide genotypes, copy numbers and gene expression levels
Background: Accurate analyses of comprehensive genome-wide SNP genotyping and gene expression data sets is challenging for many researchers. In fact, obtaining an integrated view of both large scale SNP genotyping and gene expression is currently complicated since only a limited number of appropriate software tools are available. Results: We present SNPExpress, a software tool to accurately analyze Affymetrix and Illumina SNP genotype calls, copy numbers, polymorphic copy number variations (CNVs) and Affymetrix gene expression in a combinatorial and efficient way. In addition, SNPExpress allows concurrent interpretation of these items with Hidden-Markov Model (HMM) inferred Loss-of-Heterozygosity (LOH)- and copy number regions. Conclusion: The combined analyses with the easily accessible software tool SNPExpress will not only facilitate the recognition of recurrent genetic lesions, but also the identification of critical pathogenic genes
- …