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Short Note

A simple derivation of the effective stress coefficient

for seismic velocities in porous rocks

Boris Gurevich*

INTRODUCTION

The effect of confining stress and pore pressure on seis-
mic velocities is important for such geophysical applications
as overpressure prediction from seismic data (Eaton, 1975;
Dutta, 2002; Huffman, 2002; Sayers et al., 2002) and, more
recently, for hydrocarbon production monitoring using time-
lapse seismic measurements (Tura and Lumley, 1999; Landrg,
2001). The dependence of seismic velocity on pressure has been
confirmed for a variety of rocks by laboratory measurements of
elastic wave velocities in samples with varying pressure in pore
fluids (see, e.g., Wyllie et al., 1958; Todd and Simmons, 1972;
Eberhart-Phillips et al., 1989; Prasad and Manghnani, 1997).
In general, for a rock subjected to a given confining stress o,
higher pore pressures P correspond to lower compressional
and shear velocities. Confining stress has a similar effect (but
with opposite sign) on seismic velocities. Since both confining
stress and pore pressure vary in the subsurface, knowledge of
acoustic velocities in rocks as functions of both confining stress
and pore pressure

Up,s = Up,s(o'c, P) (1)

is required. Central to the analysis of this relationship is the
notion of effective stress, which postulates that since confining
stress and pore pressure have similar but opposite effects, their
cumulative effect on velocities can be expressed as a function
of some linear combination of o; and P,

Ups = Up,s(Uc, P)= Up,s(Ue)’ (2)

where the tensor

is called effective stress, and n is called an effective stress co-
efficient. The concept of effective stress greatly simplifies the

analysis of stress and pressure dependency of rock properties
by reducing the number of independent variables from two to
one. Thus, a detailed understanding of the effective stress and
effective stress coefficient is in order.

While the concept of effective stress is central to the studies
of stress- and pressure-dependent behavior of rocks, there ex-
ists a considerable confusion among different authors on this
matter. Following Terzaghi (1943), it has been shown that the
effective stress coefficient n should be equal to one (see, e.g.,
Gardner et al., 1965; Zimmerman, 1991). In turn, Biot’s the-
ory of poroelasticity (Biot, 1941; Geertsma, 1957) shows that
effective stress coefficient for bulk volumetric strain is given by

n=1-Ky/Ks, 4

where K, denotes the bulk modulus of the solid matrix, and
Ks is the bulk modulus of the solid grain material (Nur and
Byerlee, 1971; Robin, 1973). Other authors even suggest that n
is not always a constant and may itself depend on the confining
stress and pressure (Gangi and Carlson, 1996; Prasad and
Manghnani, 1997).

An in-depth analysis of this disparity and of the concept
of effective stress in general has been performed by Robin
(1973), Carroll and Katsube (1983), Zimmerman (1991), and
Berryman (1992, 1993). These studies show that there is no
universal effective stress coefficient for all rock properties, and
different values of n apply for different physical quantities.
In particular, Zimmerman (1991) has shown that for a rock
composed of a single mineral constituent, the effective stress
coefficient is equal to one for porosity and dry elastic moduli,
and equal to the Biot coefficient 1 — K /K for bulk volumetric
strain. Berryman (1992, 1993) derived effective stress coeffi-
cients for various properties of rocks composed of a number
of mineral constituents, and summarized these results in a con-
cise table that shows which effective stress coefficients apply
to which physical quantity.
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As follows from these results, in a range of pressures en-
countered in the sedimentary crust, the effective stress coef-
ficient for seismic velocity in clean sandstones must be equal
to one with a high degree of accuracy. However, laboratory
measurements often show effective stress coefficients system-
atically lower than one (Todd and Simmons, 1972; Christensen
and Wang, 1985; Prasad and Manghnani, 1997; Siggins and
Dewhurst, 2003). To explain these observations, some authors
proposed models of effective stress which are inconsistent with
theoretical results described above (Gangi and Carlson, 1996;
Prasad and Manghnani, 1997).

These publications suggest that the controversy about effec-
tive stress coefficients still persists and requires further clarifi-
cation. The purpose of this paper is to clarify the value of effec-
tive stress coefficients for elastic moduli and seismic velocity
in a clean sandstone composed of a single linearly elastic solid
material. Specifically, I derive the effective stress coefficient
directly from the equations of linear elasticity and show that it
indeed must be equal to one. This approach is not completely
new; it may be regarded as an expanded version of the argu-
ment given by Gardner et al. (1965) and Zimmerman (1991).
A somewhat different and more general approach based on
the equations of Brown and Korringa (1975) was developed by
Berryman (1992).

DEFINITIONS OF EFFECTIVE STRESS

Suppose that some property of the rock, say F, depends only
on the current stress state irrespective of the stress history and
stress path. This assumption obviously ignores hysteresis ef-
fects, and is often referred to as the reversibility assumption
(Gardner et al., 1965; Zimmerman, 1991). In the context of ge-
ologic history, reversibility is most likely to be violated during
the compaction, but to hold during the unloading stage of the
stress history (Goulty, 1998). If this assumption is valid, than
property F can be written as a function of the confining stress
and pore pressure:

F=F(" P). 5)

Generally, effective stress for property F is defined as
a linear combination of confining stress and pore pressure
;] =0 —nPg; such that F(c°, P) can be expressed as a func-
tion of o€ only:

F =F(c% P) = F(c°). (6)

That is, if two stress—pressure conditions (¢, P%) and (¢!, P)
are such that effective stress cri? = ai? —nPé§;; is the same,

o —nP%; =o' —nP's;, (7)

then the property F is also the same;
F(o®, P =F(c°, P (8)

In addition, effective pressure is also considered to be a lin-
ear combination of confining stress and pressure that enters a
constitutive relation in the theory of poroelasticity.
Asmentioned earlier, effective stress coefficients may be dif-
ferent for different rock properties, since different rock prop-
erties may depend on confining stress and pressure in different
ways (Robin, 1973; Zimmerman, 1991; Berryman, 1992, 1993).
To analyse the concept of effective stress for acoustic velocities,

we recall that compressional and shear velocities in a saturated
rock whose skeleton is made up of a single elastic material
may be computed using the Gassmann (1951) equation from
the bulk and shear moduli of the dry matrix, bulk moduli of
the solid grain material and fluid, porosity, and solid and fluid
densities. Thus, in order to understand the stress and pressure
dependencies of these velocities, it is necessary to analyse the
stress and pressure dependency of the bulk and shear moduli
of the dry rock matrix. This is done in the next section.

EFFECTIVE STRESS FOR DRY-ROCK MODULI

Consider a porous rock sample shown in Figure 1. The rock
consists of a solid part and a fluid-filled pore space, which are
separated by aninterface I'. The solid part has bulk modulus K,
shear modulus s, and density ps. Here and below we assume
that, within the range of stress fields considered, the solid grain
material is linearly elastic, that is, Ks and s are constants. Note
that for a rock defined in such way the reversibility assumption
(5) is automatically satisfied, as linear elastic deformations are
always reversible.

The outer surface of the sample is denoted by I'e. The sample
is subjected to a confining stress o€ on I'e and a uniform pore
fluid pressure P onI'. These boundary conditions create a stress
field o® which satisfies the elasticity equilibrium equations

daij

% 0 )
and boundary conditions 6 =0 onT'eand o = P on ", where
subscript n refers to the normal stress traction (here and be-
low summation over repeated indices is assumed). Due to the
stress ¢, the solid material is in a deformed state (from an
initial unstressed state). The corresponding strain e,“J satisfies

Figure 1. Idealised rock subjected to confining stress on the
outer surface I'e and pore pressure on the inner surface I.
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the elastic stress-strain relation (Hooke’s law), (Landau and
Lifshitz, 1959):

1
o) = Ks€hnnfli +2us<q(} - geomm&j)- (10)

Note that this form of elastic stress-strain relations assumes
that compressive stresses (and hence pressures) are negative.

Now suppose that we have applied a new pore pressure
P!=P + P’ (that is, now there is an extra pressure P’) and
a new confining stress o' such that

Ui(j:l — P15ij = O—i(j: — P5ij . (11)
Equation (11) can be rewritten in the form
Ui(-:l — ai(j: = Pl5ij - P5ij = P/(Sij . (12)

This means that the new boundary conditions for the solid
are 0 =0°4+P’§; on I'e and o,=P+ P’ on the internal
boundary I'.

A solution to the equilibrium equations (9) with these new
boundary conditions can be written as

The corresponding strain ei‘j must satisfy the elastic stress-strain
relation

1
Ji} = Kse:nmsij + 2/,Ls<qu — ger]nmsll> (14)
Subtracting equation (10) from equation (14) yields
/ 1 /
P'dij = Ks€mmi +2Ms(e§j - gemmgij>’ (15)

where € =e! — €® denotes strain relative to the state defined
by €”. Taking trace of both sides of equation (15) yields

P’ = Ke€pr (16)

Substituting P’ from equation (16) back into equation (15), we
obtain

1
2us<e.'; - gefnm5u> =0. (17)

Therefore,

!

/ / / 1 / P
€1 =€ =63= g(e(u + €, + €)= 3K- Ks (18)
and

€, =€y =¢€3 =0. (19)

Equations (18) and (19) give the solution to our problem.
They indicate that a change in confining stress and pore pres-
sure such that the differential stress ai? =o0jj — Péjj remains
unchanged results in the extra uniform dilatation by P’/3K.

We now recall that for the rock whose solid material is lin-
early elastic, the dry matrix (or drained) bulk K, and shear p
moduli are scale-invariant properties, that is, they depend on
the geometry of the pore space but do not depend on its abso-

lute spatial dimensions (Gardner et al., 1965; Christensen, 1979;
Berryman, 1992). Therefore, these drained bulk and shear
moduli are not affected by the uniform dilatation. Thus, for
a given differential pressure ai? =o0j; — P3jj, bulk and shear
drained moduli are independent of the confining stress or pore
pressure. In other words,

K(] = Ko(dij —_ P(Sij) (20)
and
wo = po(oij — Pdij). (21)

We conclude that for a rock whose skeleton is made up of a
single elastic grain material, the effective stress coefficient for
bulk and shear drained moduli is exactly unity.

EFFECTIVE STRESS FOR OTHER EFFECTIVE PROPERTIES

In the previous section, we showed that effective stress coef-
ficient for bulk and shear drained moduli is exactly unity, and
hence effective stress is equal to Terzaghi’s (1943) differential
stress ojj — P§;j. The same is true about porosity: porosity ¢ is
also obviously a scale-invariant quantity. However, the same
cannot be said about other effective rock properties. In par-
ticular, permeability is affected by dilatation because it is a
scale-dependent quantity (proportional to the square of the
linear dimensions of the pore space). Overall matrix density
po=(1—¢)ps is also affected by uniform dilatation because
the overall volume of the sample changes. As elastic wave ve-
locities depend on density as well as elastic moduli, we observe
that, strictly speaking, effective stress cannot be defined for
velocities. However, dependency of the velocities on confining
stress and pore pressure can still be easily constructed using
effective stress coefficients for elastic moduli, porosity, total
volume, and solid density.

Furthermore, we note that stresses and pressures up to sev-
eral kilometers in depth do not exceed 100 MPa, while bulk
and shear moduli of the grain material such as quartz or calcite
are in the range of 20 x 10° to 80 x 10> MPa. Therefore, the
dilatation caused by changes in confining stress and pressure
corresponding to a constant differential stress does not exceed
0.003. Thus, variations of total volume and solid density due
to stress variations should not exceed 0.3%. This variation is
usually much smaller than variations in effective elastic moduli
in the same stress range (usually caused by opening and closing
of microcracks), and thus its effect on seismic velocities can be
ignored.

Thus, we conclude that for moderate stresses, the differen-
tial stress represents the effective stress for acoustic velocities.
When applied to the properties affected by the pore fluid (such
as acoustic velocities), this result requires the fluid to also have
compressibility independent of pressure. This assumption is
valid to a high degree for water and dead oil, but is clearly
invalid for any gas or live oil (Batzle and Wang, 1992).

As mentioned in the introduction, another definition of ef-
fective stress refers to the one that enters macroscopic constitu-
tive relations for poroelastic media. Macroscopic infinitesimal
strain can be defined as relative change of the overall volume
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of the sample Vj;:
dW

o 22)

deb =

Biot (1941) showed that macroscopic stress-strain relation for
small strains may be written as

d(ai(j: — Np P(Sij)

O 23)

d€b=—

where n, =1 — Ko /Ksissometimes called Biot’s effective stress
coefficient or the Biot-Willis coefficient (Biot and Willis, 1957).
Equation (23) means that for a small macroscopic strain, an
appropriate definition of effective stress is

O’ieb = Ui(j: — Np P(SH y (24)
with np =1 — K(/Ks being the effective stress coefficient. Note
that if o°® is constant, the overall volume of the sample and,
hence, matrix density, are also constant as well. Thus, o®° rep-
resents exact effective stress for matrix density.

Generally speaking, effective stress given by equation (24) is
different from the differential stress ai‘j’ =o0i; — P&;. However,
if the rock matrix is highly compressible (K¢ <« Ks), then ny is
close to unity, and effective stress o®® becomes equal to the
differential stress. The condition Ky <« K is a good approxi-
mation for soils and therefore is widely used in soil mechanics.
It is this equivalence of the effective stress to the differen-
tial stress for soils that is perhaps the original cause of the
coexistence of several quite different definitions of effective
stress.

DISCUSSION AND CONCLUSIONS

We have shown that, for an idealized model of the rock,
within a margin of error of less than 1% effective stress co-
efficient N may be taken to be unity for the variety of rock
properties. This theoretical result is supported by laboratory
observations (Wyllie et al., 1958; Zimmerman, 1991), particu-
larly on clean sandstones.

However, many authors have reported measurements of
rock properties (e. g., elastic wave velocities) as a function of
confining stress and pore pressure, in which much lower val-
ues of n were observed (Prasad and Manghnani, 1997; Siggins
et al., 2001; Siggins and Dewhurst, 2003). As also noted by
Zimmerman (1991), this deviation from the behavior predicted
by the theory may be caused by the violation of the assump-
tions made in the theoretical treatment. Two main assumptions
are the homogeneity of the grain matrix material and its linear
elasticity within the range of stresses and pressures consid-
ered. The first assumption never holds exactly for real rocks.
It may be a reasonable approximation for rocks which con-
sist either predominantly of one mineral component or of a
few minerals with not very different elastic properties. How-
ever, this approximation will not hold for very heterogeneous
rocks, such as shaley sandstones or shales. Detailed analysis
of the effect of matrix heterogeneity on effective stress coef-
ficients for different physical properties based on the equa-
tions of Brown and Korringa (1975) has been performed by
Berryman (1992, 1993). Assumptions of linear elasticity of the
solid grain material should be acceptable for quartz and cal-

cite, but may not be valid for clay minerals, some cements,
or bound water. Further experimental and theoretical studies
are required to establish effective stress coefficients for real
rocks.
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