1,830 research outputs found

    The seismic properties of low-mass He-core white dwarf stars

    Get PDF
    We present here a detailed pulsational study applied to low-mass He-core white dwarfs, based on full evolutionary models representative of these objects. The background stellar models on which our pulsational analysis was carried out were derived by taking into account the complete evolutionary history of the progenitor stars, with special emphasis on the diffusion processes acting during the white dwarf cooling phase. We computed nonradial gg-modes to assess the dependence of the pulsational properties of these objects with stellar parameters such as the stellar mass and the effective temperature, and also with element diffusion processes. We also performed a g- and p-mode pulsational stability analysis on our models and found well-defined blue edges of the instability domain, where these stars should start to exhibit pulsations. We found substantial differences in the seismic properties of white dwarfs with M0.20MM_* \gtrsim 0.20 M_{\odot} and the extremely low-mass (ELM) white dwarfs (M0.20MM_* \lesssim 0.20 M_{\odot}). Specifically, gg-mode pulsation modes in ELM white dwarfs mainly probe the core regions and are not dramatically affected by mode-trapping effects by the He/H interface, whereas the opposite is true for more massive He-core white dwarfs. We found that element diffusion processes substantially affects the shape of the He/H chemical transition region, leading to non-negligible changes in the period spectrum of low-mass white dwarfs. Our stability analysis successfully predicts the pulsations of the only known variable low-mass white dwarf (SDSS J184037.78+642312.3), and also predicts both gg- and pp-mode pulsational instabilities in a significant number of known low-mass and ELM white dwarfs.Comment: 14 pages, 15 figures, 2 tables. To be published in Astronomy & Astrophysic

    Evolution of iron core white dwarfs

    Get PDF
    Recent measurements made by Hipparcos (Provencal et al. 1998) present observational evidence supporting the existence of some white dwarf (WD) stars with iron - rich, core composition. In this connection, the present paper is aimed at exploring the structure and evolution of iron - core WDs by means of a detailed and updated evolutionary code. In particular, we examine the evolution of the central conditions, neutrino luminosity, surface gravity, crystallization, internal luminosity profiles and ages. We find that the evolution of iron - rich WDs is markedly different from that of their carbon - oxygen counterparts. In particular, cooling is strongly accelerated as compared with the standard case. Thus, if iron WDs were very numerous, some of them would have had time enough to evolve at lower luminosities than that corresponding to the fall - off in the observed WD luminosity function.Comment: 8 pages, 21 figures. Accepted for publication in MNRA

    Pulsations of massive ZZ Ceti stars with carbon/oxygen and oxygen/neon cores

    Get PDF
    We explore the adiabatic pulsational properties of massive white dwarf stars with hydrogen-rich envelopes and oxygen/neon and carbon/oxygen cores. To this end, we compute the cooling of massive white dwarf models for both core compositions taking into account the evolutionary history of the progenitor stars and the chemical evolution caused by time-dependent element diffusion. In particular, for the oxygen/neon models, we adopt the chemical profile resulting from repeated carbon-burning shell flashes expected in very massive white dwarf progenitors. For carbon/oxygen white dwarfs we consider the chemical profiles resulting from phase separation upon crystallization. For both compositions we also take into account the effects of crystallization on the oscillation eigenmodes. We find that the pulsational properties of oxygen/neon white dwarfs are notably different from those made of carbon/oxygen, thus making asteroseismological techniques a promising way to distinguish between both types of stars and, hence, to obtain valuable information about their progenitors.Comment: 11 pages, including 11 postscript figures. Accepted for publication in Astronomy and Astrophysic

    Revisiting the luminosity function of single halo white dwarfs

    Get PDF
    White dwarfs are the fossils left by the evolution of low-and intermediate-mass stars, and have very long evolutionary timescales. This allows us to use them to explore the properties of old populations, like the Galactic halo. We present a population synthesis study of the luminosity function of halo white dwarfs, aimed at investigating which information can be derived from the currently available observed data. We employ an up-to-date population synthesis code based on Monte Carlo techniques, that incorporates the most recent and reliable cooling sequences for metal poor progenitors as well as an accurate modeling of the observational biases. We find that because the observed sample of halo white dwarfs is restricted to the brightest stars only the hot branch of the white dwarf luminosity function can be used for such purposes, and that its shape function is almost insensitive to the most relevant inputs, like the adopted cooling sequences, the initial mass function, the density profile of the stellar spheroid, or the adopted fraction of unresolved binaries. Moreover, since the cut-off of the observed luminosity has not been yet determined only lower limits to the age of the halo population can be placed. We conclude that the current observed sample of the halo white dwarf population is still too small to obtain definite conclusions about the properties of the stellar halo, and the recently computed white dwarf cooling sequences which incorporate residual hydrogen burning should be assessed using metal-poor globular clusters.Comment: 9 pages, 9 figures, accepted for publication in A&

    New phase diagrams for dense carbon-oxygen mixtures and white dwarf evolution

    Get PDF
    Cool white dwarfs are reliable and independent stellar chronometers. The most common white dwarfs have carbon-oxygen dense cores. Consequently, the cooling ages of very cool white dwarfs sensitively depend on the adopted phase diagram of the carbon-oxygen binary mixture. A new phase diagram of dense carbon-oxygen mixtures appropriate for white dwarf interiors has been recently obtained using direct molecular dynamics simulations. In this paper, we explore the consequences of this phase diagram in the evolution of cool white dwarfs. To do this we employ a detailed stellar evolutionary code and accurate initial white dwarf configurations, derived from the full evolution of progenitor stars. We use two different phase diagrams, that of Horowitz et al. (2010), which presents an azeotrope, and the phase diagram of Segretain & Chabrier (1993), which is of the spindle form. We computed the evolution of 0.593 and 0.878M_sun white dwarf models during the crystallization phase, and we found that the energy released by carbon-oxygen phase separation is smaller when the new phase diagram of Horowitz et al. (2010) is used. This translates into time delays that are on average a factor about 2 smaller than those obtained when the phase diagram of Segretain & Chabrier (1993) is employed. Our results have important implications for white dwarf cosmochronology, because the cooling ages of very old white dwarfs are different for the two phase diagrams. This may have a noticeable impact on the age determinations of very old globular clusters, for which the white dwarf color-magnitude diagram provides an independent way of estimating their age.Comment: 7 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    On the possible existence of short-period g-mode instabilities powered by nuclear burning shells in post-AGB H-deficient (PG1159-type) stars

    Get PDF
    We present a pulsational stability analysis of hot post-AGB H-deficient pre-white dwarf stars with active He-burning shells. The stellar models employed are state-of-the-art equilibrium structures representative of PG1159 stars derived from the complete evolution of the progenitor stars. On the basis of fully nonadiabatic pulsation computations, we confirmed theoretical evidence for the existence of a separate PG1159 instability strip in the logTefflogg\log T_{\rm eff} - \log g diagram characterized by short-period gg-modes excited by the ϵ\epsilon-mechanism. This instability strip partially overlaps the already known GW Vir instability strip of intermediate/long period gg-modes destabilized by the classical κ\kappa-mechanism acting on the partial ionization of C and/or O in the envelope of PG1159 stars. We found that PG1159 stars characterized by thick He-rich envelopes and located inside this overlapping region could exhibit both short and intermediate/long periods simultaneously. we study the particular case of VV 47, a pulsating planetary nebula nucleus that has been reported to exhibit a series of unusually short pulsation periods. We found that the long periods exhibited by VV 47 can be readily explained by the classical κ\kappa-mechanism, while the observed short-period branch below 300\approx 300 s could correspond to modes triggered by the He-burning shell through the ϵ\epsilon-mechanism, although more observational work is needed to confirm the reality of these short-period modes. Were the existence of short-period gg-modes in this star convincingly confirmed by future observations, VV 47 could be the first known pulsating star in which both the κ\kappa-mechanism and the ϵ\epsilon-mechanism of mode driving are simultaneously operating.Comment: 9 pages, 5 figures, 2 tables. To be published in The Astrophysical Journa

    The potential of the variable DA white dwarf G117-B15A as a tool for Fundamental Physics

    Get PDF
    White dwarfs are well studied objects. The relative simplicity of their physics allows to obtain very detailed models which can be ultimately compared with their observed properties. Among white dwarfs there is a specific class of stars, known as ZZ-Ceti objects, which have a hydrogen-rich envelope and show periodic variations in their light curves. G117-B15A belongs to this particular set of stars. The luminosity variations have been successfully explained as due to g-mode pulsations. G117-B15A has been recently claimed to be the most stable optical clock ever found, being the rate of change of its 215.2 s period very small: \dot{P}= (2.3 +- 1.4)x10^{-15} s s^-1, with a stability comparable to that of the most stable millisecond pulsars. The rate of change of the period is closely related to its cooling timescale, which can be accurately computed. In this paper we study the pulsational properties of G117-B15A and we use the observed rate of change of the period to impose constraints on the axion emissivity and, thus, to obtain a preliminary upper bound to the mass of the axion. This upper bound turns out to be 4cos^{2}{\beta} meV at the 95% confidence level. Although there are still several observational and theoretical uncertainties, we conclude that G117-B15A is a very promising stellar object to set up constraints on particle physics.Comment: 32 pages, 14 figures, accepted for publication in New Astronom
    corecore