36 research outputs found

    ViRMA: Virtual Reality Multimedia Analytics at LSC 2021

    Get PDF
    In this paper we describe the first iteration of the ViRMA prototype system, a novel approach to multimedia analysis in virtual reality and inspired by the M3 data model. We intend to evaluate our approach via the Lifelog Search Challenge (LSC) to serve as a benchmark against other multimedia analytics systems

    LifeMon: A MongoDB-Based Lifelog Retrieval Prototype

    Get PDF

    Scalability of the NV-tree: Three Experiments

    Get PDF
    International audienceThe NV-tree is a scalable approximate high-dimensional indexing method specifically designed for large-scale visual instance search. In this paper, we report on three experiments designed to evaluate the performance of the NV-tree. Two of these experiments embed standard benchmarks within collections of up to 28.5 billion features, representing the largest single-server collection ever reported in the literature. The results show that indeed the NV-tree performs very well for visual instance search applications over large-scale collections

    PhotoCube at the Lifelog Search Challenge 2021

    Get PDF

    Dynamicity and Durability in Scalable Visual Instance Search.

    Get PDF
    Visual instance search involves retrieving from a collection of images the ones that contain an instance of a visual query. Systems designed for visual instance search face the major challenge of scalability: a collection of a few million images used for instance search typically creates a few billion features that must be indexed. Furthermore, as real image collections grow rapidly, systems must also provide dynamicity, i.e., be able to handle on-line insertions while concurrently serving retrieval operations. Durability, which is the ability to recover correctly from software and hardware crashes, is the natural complement of dynamicity. Durability, however, has rarely been integrated within scalable and dynamic high-dimensional indexing solutions. This article addresses the issue of dynamicity and durability for scalable indexing of very large and rapidly growing collections of local features for instance retrieval. By extending the NV-tree, a scalable disk-based high-dimensional index, we show how to implement the ACID properties of transactions which ensure both dynamicity and durability. We present a detailed performance evaluation of the transactional NV-tree: (i) We show that the insertion throughput is excellent despite the overhead for enforcing the ACID properties; (ii) We also show that this transactional index is truly scalable using a standard image benchmark embedded in collections of up to 28.5 billion high-dimensional vectors; the largest single-server evaluations reported in the literature
    corecore