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Abstract. User relevance feedback (URF) is emerging as an important
component of the multimedia analytics toolbox. State-of-the-art URF
systems employ high-dimensional vectors of semantic features and train
linear-SVM classifiers in each round of interaction. In a round, they
present the user with the most confident media items, which lie furthest
from the SVM plane. Due to the scale of current media collections, URF
systems must be supported by a high-dimensional index. Usually, these
indexes are designed for nearest-neighbour point queries, and it is not
known how well they support the URF process. In this paper, we study
the performance of four state-of-the-art high-dimensional indexes in the
URF context. We analyse the quality of query results, compared to a
sequential analysis of the collection, over a range of classifiers, showing
that result quality depends (i) heavily on the quality of the SVM classi-
fier and (ii) the index structure itself. We also consider a search-oriented
workload, where the goal is to find the first relevant item for a task. The
results show that the indexes perform similarly overall, despite differ-
ences in their paths to the solution. Interestingly, worse recall can lead
to better application-specific performance.

Keywords: High-Dimensional Indexing · Interactive Learning · User
Relevance Feedback · Multimedia Retrieval

1 Introduction

In user relevance feedback (URF), the goal is to train interactive classifiers to
satisfy specific information needs based on direct feedback from the user. When
interacting with a multimedia collection, the user is presented in each interaction
round with a set of items from the collection and asked to judge some items as
relevant and some items as non-relevant for a specific task. At the start of the
URF process, the items are typically randomly sampled from the collection or
retrieved using a query, but once the initial classifier has been trained the items
are usually selected from the top items returned by the current version of the
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classifier. This interactive process continues until the user’s information need is
satisfied or they determine that the collection holds no items of interest. As URF
allows users to express and refine fuzzy information needs, it is an important
component of the multimedia analytics toolbox.

A state-of-the-art multimedia URF system, such as [12], is implemented as
follows. First, the multimedia items are described by semantic labels, which are
produced by advanced deep-learning models and compressed using an index-
based compression technique. Second, such a system builds linear-SVM classi-
fiers, which are known to work well with few examples, and presents users in
each interaction round with the multimedia items that (a) are furthest away
from the resulting hyperplane, and (b) have not been seen before in the process.
And third, a high-dimensional index is used to speed up the retrieval and ensure
a stable response time. While the state-of-the-art has shown URF to work at
scale using these elements, such furthest neighbour queries from an SVM-based
hyperplane have not been studied much in the literature. In particular, to the
best of our knowledge these evaluations have not been carried out in the context
of URF. This paper therefore opens an investigation into the suitable choice of
such a high-dimensional index for URF over multimedia collections.

Indexing high-dimensional data to support similarity queries such as finding
(approximate) nearest or furthest neighbors suffer the curse of dimensionality. In
general, this means that there are no sublinear time algorithms that solve these
tasks exactly on arbitrary data, and a linear scan through the dataset is the best
one can hope for. However, if a small loss in accuracy can be accommodated
or if the data is “favorable”, a large collection of scalable solutions for finding
nearest neighbors is available. A solution is either provided with strong theoret-
ical guarantees, such as hashing-based approaches [9] with their theoretical time
guarantees, or with strong empirical evidence on the quality of the query result,
such as cluster-based [11], graph-based [10, 14], or tree-based [5] approaches. The
ANN benchmarking effort [1] summarizes these approaches and demonstrates
that, in practice, nearest neighbor search tasks on million-scale datasets can be
solved several orders of magnitude faster than a linear scan with little loss in
accuracy.

1.1 Problem Definition

We formulate the SVM-based hyperplane setting used in URF as follows. First,
the distance between a point p ∈ Rd and a hyperplane q ∈ Rd+1 is

dP2H(p, q) =
qd+1 +

∑d
i=1 piqi√∑d

i=1 q
2
i

.

Second, the problem of finding furthest points from a given hyperplane in the
positive direction is equivalent to finding the points in the dataset with largest
(positive) distance to the hyperplane. To avoid an exhaustive scan through the
dataset, the task is to build an index data structure over the point set S ⊆ Rd

that supports these furthest point queries.
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Point-to-Hyperplane queries are challenging because dP2H is not a distance
measure in the strict sense. However, we can reduce the problem to an inner
product space as follows: Append a 1 to each point in the dataset, so that
both points and hyperplanes have d+ 1 dimensions, and notice that—since the
hyperplane is fixed at query time—finding the furthest neighbors according to
dP2H is equivalent to finding vector p that maximizes the inner product (MIPS)
d′(p, q) =

∑d+1
i=1 piqi. Solving maximum inner product search has seen significant

progress in the research community and arises in particular in recommender sys-
tems [2]. The standard approach involves asymmetric transformations of data
and query points [2, 20]. After such a transformation, finding points that max-
imize the inner product becomes equivalent to finding nearest neighbors in the
transformed space, which is usually Euclidean distance. However, these transfor-
mations usually lower the contrast between points. For example, Huang et al. [8]
consider transformations for hashing-based closest point to hyperplane queries
and experimentally show that finding furthest neighbors instead of nearest neigh-
bors (under slightly different transformations) provides empirical speed-ups. In
the context of graphs, Morozov and Babenko [16] show that the transformed
vectors produce worse graph indexes than using the inner product directly.

1.2 Contributions

The current state-of-the-art large-scale URF approach, Exquisitor [12], uses the
high-dimensional ANN index eCP (extended Cluster Pruning) [15]. The stated
reasons for this choice are its comprehensibility, time guarantees, and ability to
work with hyperplane queries using MIPS. Based on practical advances in nearest
neighbor search, we evaluate the suitability of state-of-the-art high-dimensional
indexing approaches for URF over multimedia collections. In particular, we
inspect three diverse approaches—Annoy (Approximate Nearest Neighbor Oh
Yeah) [5], IVF (Inverted File Index on k-means clustering) [11], and HNSW (Hi-
erarchical Navigable Small World) [14]—that perform well on million-scale near-
est neighbor search with regards to supporting maximum inner product queries.
We evaluate these indexes along with the eCP index using an automated evalua-
tion protocol, based on the Lifelog Search Challenge 2019 dataset [7], to simulate
URF sessions with the goal of finding one relevant item. All source code for the
URF evaluation is made available on GitHub1 to provide the research community
with an experimental pipeline to compare different high-dimensional indexes for
URF. In the process, we make the following contributions:

– All evaluated indexes show adequate quality towards hyperplane queries in
terms of recall, with HNSW achieving the best overall performance.

– Indexes that introduce variety, due to build quality or search approach, are
better at solving URF tasks (eCP and Annoy). Thus, high recall does not
directly translate to being the best at solving the actual URF tasks. This
relates to hyperplane queries being refined throughout a URF session, so the
quality of initial queries may not be well defined for the task.

1 https://github.com/Ok2610/urf-indexing-eval
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– Finally, we analyze the effects of the approximation of each index. We find
that eCP and IVF have a more comprehensible parameter for this than
HNSW and Annoy, and eCP’s setting has the least variability leading to
better time estimates.

2 User Relevance Feedback

Analytical tasks for multimedia focus on discovering knowledge from the media
items that reside within the ever growing multimedia collections of today. To
truly uncover this knowledge it is essential to explore and search through the
contents of such collections in real time. While long-running machine tasks may
be capable of categorising and summarising parts of the collection for a task,
typically as new knowledge is discovered the goal of the task can shift. In such
situations, user relevance feedback is preferred as it allows the user to shift the
classifier based on the new knowledge [22].

The most common approach to URF is to present a suggestion set S to the
user, using the current classifier C. From S the user labels p items as positives
and n items as negatives, which are then used to update C. There are multiple
ways to determine which items to include in S. In URF the most confident items
of C are presented. This is beneficial when the intention is not solely on creating
a strong classifier, as the information need may not be entirely clear and may be
susceptible to change throughout the session. With URF, the user may explore
the collection or be more search-oriented, depending on how much refinement is
put towards the classifier.

URF for content-based retrieval has been around for several decades [18, 23, 4,
17], but as multimedia collections started to rapidly expand, it became cumber-
some at such scale due to the response time. Even prior to the scale issues, it was
difficult to have explainable classifiers due to the feature representations of the
multimedia items. Comprehension is important for the user to better understand
the effects of their actions on the classifier. With improvements in deep learning,
machines have become much better at discovering semantic features in multime-
dia contents [6, 3], making it a preferred choice of feature for URF applications.
Semantic features extracted through deep nets result in sparse high-dimensional
vectors. The current state of the art large-scale URF approach, Exquisitor, uses
the high-dimensional feature vectors in a compressed representation together
with the clustering-based ANN index eCP. The compressed representation se-
lects the top f features and stores them in a space-efficient representation. Note
that the compressed representation does not transform the feature space to en-
sure it remains comprehensible. The eCP index has been modified such that it
works with this compressed representation. Furthermore, the index handles hy-
perplane queries from Exquisitor’s Linear-SVM classifier [12]. In addition to the
basic URF scheme, Exquisitor also employs incremental retrieval, which contin-
ues a search within the index, in case not enough items are found to be returned.
This is linked to the search expansion parameter b in the eCP index, which is
the number of clusters it needs to retrieve. Exquisitor has been shown capable of
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working with YFCC100M, a multimedia collection with nearly 100 million items,
achieving subsecond response time with modest computing resources [12].

3 High-Dimensional Indexing

There exists a plethora of different approaches for solving nearest neighbor search
queries. The most successful approaches can be categorized into clustering-based,
graph-based, hashing-based, and tree-based approaches. For our practical evalua-
tion, we pick approaches from each category which have not been considered for
URF. We exclude locality-sensitive hashing based approaches because they were
part of an earlier evaluation [12] and were shown to be inferior to using the eCP
index. We review the considered approaches next.

Cluster-based approaches (IVF [11], eCP [15]). Given a dataset S ⊆ Rd and two
parameters k and ℓ, run a clustering algorithm such as k-means to find k cen-
troids. By associating each point with its closest centroid, the space is partitioned
into k parts. The data structure that stores the centroids and the associated lists
is referred to as an inverted file index (IVF). To find nearest neighbors to a query
q ∈ Rd, inspect the points associated to the ℓ closest centroids to q, possibly in-
dexing the centroids for large k. The eCP index uses the same approach but
uses the k initial random points as centroids to find a balanced space partition.
Furthermore, eCP builds a hierarchy using the centroids.

Graph-based approaches (HNSW [14]). Given a dataset S ⊆ Rd and parameters
k, ℓ, the goal is to build a graph G = (V,E), where each point is represented
by a vertex and edges exist between a point and a “diverse” set of at most k
close points. Let us assume that such a graph G is given. To find the nearest
neighbors of a query point q, HNSW uses a hierarchy of graphs to find a good
entry point into the bottom-layer graph that indexes all points. Given such a
start point, carry out a greedy hill climbing. In each round, consider the currently
closest point to the query not considered before. Inspect the neighborhood and
compute the distances to the query point. After each round, trim the list of
current closest points (inspected and non-inspected) to ℓ, which is usually called
the beam width. Terminate if all ℓ points have been considered. (Note that this
is not a bound on the number of distance computations, since considered points
might be trimmed.) To build the graph, order all the points and insert them
one-by-one using the search algorithm¸ often with a smaller ℓ′ than used for
the queries. From the points inspected in this search, a pruned set of k points
is chosen as neighbors of the inserted point (pruning might be necessary for its
neighbors if the degree bound k is not met). There exist many other graph-based
indexes that change details of this construction [10, 21].

Tree-based approaches (Annoy [5]). Annoy builds a collection of trees based on
random projections. Given a set of points S and two parameters k, ℓ, the data
structure works as follows. First, a node in a tree is described by a hyperplane
a that splits up a point set S′ ⊆ S. For example, one can find the median inner
product of the data points with a and split S′ into two balanced subsets based
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on that. At the root, the whole dataset is taken into consideration, and a leaf is
created as soon as the number of points at a node is below a certain threshold.
Instead of a single tree, k trees are created to boost the quality of the results.
Given a query point and a collection of k trees, carry out root-to-leaf-traversals
in each tree for the query. Traverse the trees upwards until ℓ (unique) points are
found and return the closest among these points as the result of the search.

4 Evaluation

Evaluating user relevance feedback approaches is best done through real user
tests. As we are attempting to gauge the performance of hyperplane queries
on different indexes in a preliminary URF setup, however, we do not need real
users at this stage. Instead we employ an automated evaluation protocol, based
on real-life applications [13]. The evaluation protocol consists of tasks where the
objective is to find the first relevant item within the tasks relevant item set, Rt.
Typically, in an automated URF session, a set number of positives and negatives
are considered from the suggestion set S in each round. Based on the labelling
policy used in the protocol, positives and negatives are added or replaced from
their respective global sets to train the linear-SVM classifier. Positives and neg-
atives are labelled by comparing the distances between the combined maximum
feature vector of Rt and the feature vector of items in S.

Based on [13], we design the evaluation protocol with the following parameter
choices; rd number of rounds in each URF session, k number of items to retrieve,
s the number of suggestions to consider, p the number of positives to label and
n the number of negatives to label, P and N the positive and negative sets
used to train the linear SVM. rd is set to 50 to simulate a long-running session.
s is set to 25, which typically would also be the value for k. Items seen in
previous rounds of a URF session should not be presented to the user again,
however, and in situations where all k items are seen the session ends. When the
underlying URF approach is able to remove previously seen items internally to
avoid returning them again, then we would set k = s. Since this is not the case
for the tested indexes, however, the indexes are asked to return a higher number
k = 1000 of items, from which the previously seen items are then pruned. The
labelling policy of the evaluation protocol is AccRep, where in each round p
positives and n negatives are added to P and N . If better items exists in the
remaining suggestions for either P or N , they replace the weakest items in the
sets [13]. In our evaluation p = 5 and n = 15 leading to 5-250 positives and
15-750 negatives for each session, with each session presenting a total of 1250
(s · rd) items.
Dataset. The dataset used in the evaluation is from the Lifelog Search Challenge
2019. Lifelogging is the principal of recording your daily life with as much data as
possible, i.e. logging biometric data, taking images throughout the day, food logs,
and more. Pure lifeloggers often walk around with a miniature camera on their
person that takes an image at a set interval, and thus they accumulate a large
multimedia collection. The Lifelog Search Challenge (LSC) is a live interactive
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Index Build Parameters Search Parameter

eCP L: 3, cSize: 100 b: 64
Annoy ntrees: 100 searchk: 10000
HNSW M : 48, efC : 500 efS : max(10, k)
IVF nlist: 417 nprobe: 64

Table 1: Build and search parameters for each index.

retrieval challenge, where tasks are defined over a snippet of the extremely large
collection. The LSC 2019 dataset represents one lifelogger’s daily life across 1
month, consisting of 41,666 images. There are 24 retrieval tasks defined over
this collection [7]. Semantic feature labels have been extracted using a deep net,
with the top 7 features being used and the rest set to zero. At LSC multiple
multimedia retrieval systems attempt to solve the tasks one by one within a
time limit. A task consists of a text query, but unlike regular search challenges
where the entire text is given at once, in LSC the text query is presented in
parts. Every 30 seconds new information is added to the presented text of the
current task. In the evaluation protocol this aspect is reflected when filters are
used, but as our focus here is on hyperplane queries, this aspect is ignored.
Index Parameters. We use Annoy v1.17.2, HNSW from hnswlib v0.7.0 and IVF
from Faiss v1.7.4. The build parameters for each index used in the experiments
can be seen in Table 1. The choice of the build parameters for Annoy and
HNSW are based on their settings for datasets of relevant sizes from ANN-
benchmarks [1]. The eCP index it has two build parameters; L the level of its
hierarchy and cSize the number of items in each cluster. Note that the latter is a
soft enforcement, so there is still a chance of clusters being larger or smaller. We
aim to have clusters with 100 items in a 3-level hierarchy where Ll has

√
Ll+1

clusters, with L = 3 having all clusters. The IVF index has a single build pa-
rameter nlist which specifies the number of clusters to divide the items into. We
select this to be similar to eCP’s clusters at L = 3. Each index has a runtime
approximation parameter that is set according to their recommendations. The
effects of this parameter is crucial to understand in terms of distance compu-
tations performed, as it indicates whether an index is able to provide stable
response time guarantees. All indexes were built using Euclidean distance.

4.1 Experiment 1: Hyperplane Queries

In the first experiment we investigate the recall of each index when encountering
hyperplane queries. The hyperplane queries for this experiment are generated by
running the evaluation protocol on the LSC dataset, leading to 1200 hyperplane
queries in total (24 tasks with URF sessions of 50 rounds). The groundtruth
for this experiment are the top 1000 items for each hyperplane under maximum
inner product similarity obtained by an exact linear scan. Here, recall is the
fraction of the k items returned by the implementation that belong to the true
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(a) (b)

(c) (d)

Fig. 1: Recall distribution @1000(a,c) and @25(b,d) for hyperplane queries and average
recall per round. Annoy (blue), eCP (orange), HNSW (red), IVF (teal).

top k items (groundtruth) with largest inner product for a given hyperplane.
The results from this experiment are depicted in Figure 1. Figure 1a shows the
recall distribution for the top 1000 items. The best-performing index is HNSW
with a consistent distribution above 75% recall. The IVF index is close but
has a slightly lower recall overall. eCP fares worse than IVF, which shows the
extra effort in constructing the clusters is beneficial for recall, but not by much.
Annoy has a similar distribution to eCP, but generally 10% lower recall on
average. Figure 1b shows the recall distribution for the top 25 items, or the
items that would actually be presented to the user. Here we see an increase in
recall overall for all the indexes. HNSW remains at top, achieving seemingly
100% apart from some outliers. IVF is slightly worse with eCP following. Annoy
has a much wider distribution, but a high median above 90% recall. Thus, the
items the user sees are high-recall items for the hyperplane queries regardless of
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the index.2 Figures 1c and 1d depict the average recall across all tasks per round
in the URF session. As more rounds pass in a session, the hyperplane queries
should become more descriptive. For the top 1000 items all indexes follow a
similar pattern of starting with a high recall that falls during the initial rounds,
and then settles at a lower average recall. For the top 25 items the pattern starts
similarly with a drop off, but as the hyperplane queries become more refined the
recall for all indexes increase. Given that the top 25 items are the ones the user
sees, this behavior is desired.3

4.2 Experiment 2: User Relevance Feedback

From the previous experiment, it is clear that HNSW performs best in the case
of recall for hyperplane queries while Annoy performs worst. When it comes to
URF tasks, however, the theoretical top items for a query may not necessarily
be items of interest, especially in early rounds when the hyperplane still needs
to be refined. We consider two scenarios. In Scenario 1, the indexes are provided
with the hyperplanes from using an exact linear scan in the evaluation protocol.
In Scenario 2, the linear-SVM is trained from the individual results of an index.

Table 2 shows the round where each index managed to find the first relevant
item in the top 25 in Scenario 1, where Scan represents the results from the
linear scan. Scan solves the most tasks (14 out of 24), while the indexes solve 10
tasks each except for Annoy which solves 11. With Annoy solving 1 more task
it shows that high recall for majority of hyperplane queries in a URF session is
not always necessary. Looking at the solved tasks, none of the indexes complete
a task that is not also solved by Scan, and they either solve it in the same round
or 1 round after it. Notable exceptions, are tasks 11, 20 and 23 where Scan
solves them 5-11 rounds earlier, and task 14 where eCP and HNSW solve the
task 7 rounds prior to Scan. From these results we see how the restriction on the
indexes require more rounds to solve a task, while task 14 shows that having the
entire collection available can also introduce noise.

We now turn to Scenario 2. As the indexes employ a structure and approxi-
mations on the collection, a suggestion set from the same hyperplane can differ,
and from that point they have different hyperplane queries throughout the ses-
sion. This is depicted in Table 3 where each index has run the evaluation protocol
using hyperplane queries generated from their own suggestions. By using queries
defined through their own sessions they solve more and different tasks, and for
the tasks they solve in common there are larger gaps between the rounds. Here,
Annoy solves 15 tasks and the others solve 14. It is also worth noting that Annoy,
eCP and IVF solve some tasks that Scan could not, which again indicates the
larger scope of the full scan encountering noise. We further test the assumption of

2 This experiment was also conducted using Annoy, HNSW, and IVF built using inner
product instead of Euclidean distance. In all cases, average recall @1000 was lower,
while for HNSW recall @25 was improved.

3 Similar results are observed when (roughly) targeting a certain number of distance
computations across all indexes.
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Task Scan Annoy eCP HNSW IVF

0 33 34 34 34 34
1 - - - - -
2 - - - - -
3 - - - - -
4 - - - - -
5 - - - - -
6 12 12 12 12 12
7 - - - - -
8 23 24 24 24 23
9 2 2 2 2 2
10 - - - - -
11 25 32 32 32 32
12 19 20 19 20 19
13 32 - - - -
14 11 11 4 4 12
15 10 10 10 10 10
16 36 37 36 37 37
17 - - - - -
18 3 - - - -
19 23 - - - -
20 20 25 - - -
21 - - - - -
22 - - - - -
23 4 15 15 15 15

Solved 14 11 10 10 10
Best 12 2 5 3 4

Table 2: First round in the URF session where
a relevant item for the task was found using the
hyperplanes generated for the entire dataset D.

Task Annoy eCP HNSW IVF

0 - - 33 47
1 25 - - -
2 - - - -
3 - 35 - -
4 33 - - 43
5 - - - -
6 20 6 22 12
7 - - - -
8 9 17 18 7
9 2 2 2 2
10 - - - -
11 20 40 32 43
12 39 - 17 20
13 33 27 24 -
14 18 15 11 17
15 6 8 7 10
16 29 11 37 9
17 - - - -
18 12 5 8 3
19 9 18 23 30
20 16 18 17 15
21 - - - -
22 - 32 - -
23 17 8 4 14

Solved 15 14 14 14
Best 6 4 6 5

Table 3: First round in the URF session where
a relevant item for the task is found using the
hyperplanes generated from each index.

hyperplanes from an index’ own session being best, by running the hyperplanes
from one index with another index. These results show that while they solve the
same tasks, the rounds for many of the tasks differ, ranging from a few rounds
to 20+. HNSW with IVF’s hyperplanes show the most similar performance. We
have omitted the table for these results to not exceed the article length.

Overall, from these results we have shown that all indexes, with their rec-
ommended settings, are capable of dealing with URF tasks. There is no clear
indication for which index is best; while Annoy solves the most tasks, there are
still tasks that are solved faster with the other indexes. A point of interest now
is the approximation parameter for each index which determines the number
of items each index considers or the number of distance computations taking
place. With the recommended settings Annoy has the lowest number of average
distance computations with ∼4300, while HNSW has the highest with ∼9400.
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Task Annoy eCP HNSW IVF

0 - - - 47
1 33 - - -
2 - - - -
3 - 35 - -
4 - - - 43
5 - - - -
6 26 6 16 12
7 - - - -
8 11 17 - 7
9 2 2 2 2
10 - - 47 -
11 23 40 27 43
12 31 - 15 20
13 31 27 34 -
14 18 15 11 17
15 6 8 7 10
16 - 11 46 9
17 - - - -
18 12 5 8 3
19 7 18 12 30
20 15 18 17 15
21 - - - -
22 - 32 - -
23 - 8 34 14

Solved 12 14 13 14
Best 6 6 4 7

Table 4: Results from similar
search scope (∼6400).

Task Annoy eCP HNSW IVF

0 20 - - 31
1 29 4 - -
2 - - - -
3 - - - 37
4 42 33 - -
5 45 - - -
6 17 8 48 15
7 - - - -
8 20 7 36 7
9 2 2 2 2
10 - 41 - -
11 27 15 26 -
12 22 11 30 23
13 27 33 26 -
14 22 15 11 17
15 7 8 6 10
16 7 - - 9
17 - - - -
18 7 8 7 3
19 10 22 8 23
20 16 24 22 20
21 - - - -
22 - 38 44 -
23 30 5 8 5

Solved 17 16 13 13
Best 4 10 5 4

Table 5: Results from reduced
search scope (∼3200).

Task Annoy eCP HNSW IVF

0 - - - -
1 - 46 - 31
2 - 47 - -
3 - - - -
4 18 31 - -
5 - - - -
6 40 15 25 14
7 - - - -
8 - 38 - 10
9 2 2 2 2
10 - - 41 -
11 22 33 10 42
12 21 32 45 20
13 31 31 - -
14 14 10 11 15
15 6 6 10 10
16 29 16 13 32
17 - - - -
18 8 8 7 3
19 10 27 8 16
20 18 28 16 23
21 - - - -
22 35 30 43 -
23 16 7 8 5

Solved 14 17 13 13
Best 6 4 6 7

Table 6: Results from reduced
search scope (∼1600).

The approximation parameter is what introduces the quality/time trade-off and
is often set based on the specific use case. The transparency of this parameter
is better for some indexes than others. For IVF and eCP it is the b and nprobe

parameter, which is how many clusters to consider during the search. In eCP b is
used for each level in its hierarchy. Annoy uses the searchk parameter, which is
the number of binary trees it will search. HNSW uses the efS parameter, which
is the number of candidates to consider while retrieving the top k items.

In Table 4 we compare the performance using settings for each index that
result in around 6400 distance computations. For this HNSW’s efS = 700 and for
Annoy’s searchk = 14000, while IVF and eCP remain the same (b/nprobe = 64),
so the only changes worth noting in the table are for Annoy and HNSW. With
these settings they both solve fewer tasks, 2 for Annoy and 1 for HNSW, and
some tasks where they were the best require more round, leading to other indexes
solving them faster or in the same round. For Annoy and HNSW to have the
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Fig. 2: Distribution of distance computations for the indexes, when the approximation
was aimed to be ∼6400.

same distance computations, we had to increase Annoy’s search parameter while
reducing HNSW’s. To investigate the effects of a lower scope further, we run the
evaluation protocol again with distance computations roughly around 3200 and
1600 for all indexes, depicted on Table 5 and 6 respectively. When reducing the
scope eCP solves more tasks and is seemingly faster than with the higher scope.
Annoy improves in terms of tasks solved with 17 at scope 3200, but at 1600 it
solves 14. HNSW solves the same number of tasks for both reduced scopes, but
not always the same tasks, which hints that certain tasks are better with a lower
scope for HNSW and some are better with a larger one. IVF has similar behavior
as HNSW when reducing scope. It should also be noted that the lowest scope
runs for IVF and HNSW also lead to tasks finishing before the 50 rounds as all
items returned had been seen in previous rounds. Fortunately, the relevant item
was found in a previous round for those tasks, but in case this occurs earlier,
some notion of incremental retrieval that can expand the search within the index
is needed. This feature exists in eCP when used with Exquisitor.

5 Discussion

In this section we discuss the insights gained from the experiments and the role of
approximation parameters for each index. In Figure 2 the distribution of distance
computations is depicted for each index, where the average distance computa-
tion was around 6400. Annoy with searchk = 14000 has the highest variability,
fluctuating between 4000 and 8000 distance computations. eCP, HNSW and IVF
are more consistent4 and closer to the average target.

Our experiments highlight that each index is able to solve URF tasks on
the small LSC dataset, with eCP and Annoy being better than HNSW and IVF.
4 The 0-valued outliers for HNSW stem from URF sessions stopping early, as every-

thing returned has already been seen, while the actual minimum was around 4700.
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The LSC dataset contains many near-duplicate images, as the dataset depicts the
daily life of one person. To get a better picture with a more general dataset and
similar tasks, we conducted an experiment on the dataset from Video Browser
Showdown 2020 [19] (VBS) consisting of 1 million images. Solving tasks is more
difficult in VBS as there are more scenarios to cover, and typically filters are
applied to help with the task. With pure URF both Annoy and eCP manage to
solve 2-3 tasks out of the 12, while HNSW and IVF solve 1. Similarly to the LSC
collection, eCP and Annoy performed best with a lower scope (∼3200). However,
given that Annoy still fluctuates between 1000 and 8000 distance computations,
eCP remains the better overall choice. HNSW and IVF at similar scope did
not manage to solve any task, and HNSW even had multiple sessions stopping
early due to all returned items being seen. This is the danger of a small search
scope, and is why having an easy to comprehend and reliable approximation
parameter is extremely beneficial. With eCP and IVF one can reliably ask for
additional b/nprobe clusters, knowing the computation time will be roughly the
same. However, for Annoy and HNSW this is more difficult.

6 Conclusion

In this paper we investigated the performance of multiple state-of-the-art ANN
indexes in user relevance feedback (URF) settings dealing with hyperplane queries.
We evaluated 4 indexes, the tree-based approach Annoy, the graph-based ap-
proach HNSW, and the cluster-based approaches IVF and eCP. Each of these
high-dimensional indexes use some form of approximation that introduces a qual-
ity/time trade-off. In interactive URF sessions, fast and reliable response time is
crucial. Through our experiments using an automated evaluation protocol simu-
lating URF sessions, we find that each index is able to solve such tasks. We also
discovered that a lower setting for the approximation parameter, which reduce
the search space, can improve results. However, if it is set too low, the index
may not find any new items to present the user. Out of the four, eCP and An-
noy perform best overall. We further analyze the approximation parameters of
the indexes and find eCP’s parameter to be more comprehensible and reliable.
The other indexes are still viable for URF on a small scale collection, but it is
harder to predict their performance when used at scale. Following up with real
user tests and conducting experiments on even larger collections is warranted,
to better verify these findings.
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