65 research outputs found

    The life and death of heterogeneity in magmas

    Get PDF
    Explosive volcanism is one of the most catastrophic material failure phenomena. During magma ascent, fragmentation produces particulate magma, which, if deposited above the glass transition of the interstitial melt, will sinter viscously. In-conduit tuffisites, conduit wall breccias and ash deposited from exceptionally hot pyroclastic flows are scenarios in which sintering by viscous flow is possible. Therefore, understanding the kinetics of sintering and the characteristic timescales over which magma densifies are critical to understanding the degassing timeframe in conduits and deposits. Viscous sintering is accompanied by a recovery of material strength towards that of a pore-free, dense magma. Understanding damage mechanisms and seismic behaviour prior to failure of sintered volcanic products are also crucial for the application of micromechanical models and material failure forecasting laws. Powdered standard glass and industrial glass beads have been used to explore sintering mechanisms at ambient pressure conditions and temporal evolution of connected and isolated pore-structure. I observe that sintering under low axial stress is essentially particle size, surface tension and melt viscosity controlled. I found that the timescales over which the bulk density approaches that of a pore-free melt at a given temperature is dependent on the particle-contact surface area, which can be estimated from the particle shape, the packing type and the initial total porosity. Granulometric constraint on the starting material indicates that the fraction of finer particles controls the rate of sintering as they cluster in pore spaces between larger particles and have a higher driving force for sintering due to their higher surface energy to volume ratio. Consequently, the resultant sample suite has a range of microstructures because the viscous sintering process promotes a fining of pores and a coarsening of particles. In a volcano, newly formed sintering material will then further contribute to magma-plugging of the conduit and its mechanical properties will affect magma rupture and its associated precursory signals. This consideration permitted me to explore the effect of sintering on the stress required for dynamic macroscopic failure of synthesised samples and assess the ability of precursory microseismic signals to be used as a failure forecast proxy at conditions relevant to shallow volcanic conduits. To this end, the samples were subjected to mechanical tests under a constant rate of deformation and at a temperature in the region of the material glass transition. A dual acoustic emission rig was employed to track the occurrence of brittle fracturing. The monitored acoustic dataset was then exploited to systematically assess the accuracy of the failure forecasting method as a function of heterogeneity (cast as porosity) since it acts as nucleating site for fracture propagation. The pore-emanating crack model describes well the peak stress at failure in the elastic regime for these materials. I show that the failure forecast method predicts failure within 0-15% error at porosities >0.2. However, when porosities are 100%. I interpret these results as a function of the low efficiency with which strain energy can be released in the scenario where there are few or no heterogeneities from which cracks can propagate. These observations shed light on questions surrounding the variable efficacy of the failure forecast method applied to active volcanoes. In particular, they provide a systematic demonstration of the fact that a good understanding of material properties is required. Thus I wish to emphasise the need for a better coupling of empirical failure forecasting models with mechanical parameters, such as failure criteria for heterogeneous materials, and point to the implications of this for a broad range of material-based disciplines.Explosiver Vulkanismus ist eines der drastischsten Phänomene, die ursächlich durch Materialversagen ausgelöst werden. Während seines Aufstiegs in der Kruste fragmentiert Magma zu partikelgrossen Magmafetzen, die, sofern überhalb des Glassübergangs abgelagert, viskos sintern können. Sintern durch viskosen Fluss wird bei Ablagerung von Intra-Schlot Tuffisiten, Schlotwand Brekzien und Asche aus extrem heissen pyroklastischen Ströme erwartet. Die Eingrenzung der Kinetik des Sinterns, sowie der charakteristischen Zeitskalen der Verdichtung von Magma, sind daher essentiell um den Zeitrahmen des Entgasens von Schloten und Ablagerungen besser zu verstehen. Viskoses Sintern wird begleitet von einer Erhöhung der Material Festigkeit zu der eines poren-freien, dichten Magmas. Weiterhin ist es wichtig, Beschädigungsmechanismen und das seismische Verhalten der vulkanischen Produkte kurz vor dem Materialversagen zu verstehen, um die Anwendung von mikromechanischen Modellen und die Vorhersage von Materialversagen zu ermöglichen. Glasstandard in pulverisierter Form und industrielle Glaskugeln wurden herangezogen um Sintermechanismen bei Atmosphärendruck und die zeitliche Entwicklung verbundener und isolierter Porenstrukturen zu erforschen. Ich beobachtete, dass Sintern bei niedriger axialer Belastung hauptsächlich durch Partikelgrösse, Oberflächenspannung und Schmelzviskosität kontrolliert wird. Weiterhin ist die Zeitskala, über die die Gesamtdichte bei einer definierten Temperatur die einer poren-freien Schmelze erreicht, abhängig von der Partikel-Kontakt Oberfläche, die über Partikelform, die Partikelpackung und die initiale Gesamtporosität abgeschätzt werden kann. Korngrössenanalysen der Anfangsmaterialien deuten an, dass die Feinfraktion die Rate des Sinterns kontrolliert, da der Feinanteil in den Zwickeln der grösseren Partikel Anhäufungen bilden kann und ausserdem ein höheres Sinterpotential durch sein grösseres Oberflächen-Volumen Verhältnis aufweist. Dementsprechend weisen die hergestellten Proben eine Reihe von Mikrostrukturen auf, die durch Porenverkleinerung und Kornvergröberung während des viskosen Sinterns hervorgerufen wurden. Dadurch wird neu-gebildetes, sinterndes Material innerhalb eines Vulkans das Verstopfen des Schlotes fördern, und die mechanischen Eigenschaften dieses Materials beeinflussen die Fragmentation des eigentlichen Magmas und der assoziierten Vorwarnsignale. Aufgrund dieser Betrachtung betrachte ich den Effekt des Sinterns auf die für dynamisches makroskopisches Versagen unserer synthetisierten Proben nötige Belastung näher. Dies geschah, um das Potential der mikroseismischen Signale bei Bedingungen innerhalb eines Vulkanschlots als Vorhersagekriterium für Materialversagen abzuschätzen. Dazu wurden die Proben bei konstanter Deformationsrate und Temperaturen in der Nähe des Glasübergangs mechanischen Tests unterzogen. Das Auftreten von Sprödbruchverhalten wurde mithilfe eines dualen Schallemissionsgerätes aufgezeichnet. Der resultierende akustische Datensatz wurde dann herangezogen, um die Genauigkeit der Vorhersagemethode für das Versagen als Funktion der Probenheterogeneität (also Porosität) einzugrenzen, da Porosität innerhalb eines Materials die Entstehung von Bruchstellen fördert. In diesem Zusammenhang beschreibt das Modell der "Pore-emanating cracks" für diese Materialien die Maximalbelastung bei Versagen im elastischen Regime. Ich zeige, dass Versagen bei Porositäten >0,2 innerhalb eines Fehler von 0-15% vorhergesagt werden kann. Sobald die Porositäten unter einen Wert von 0,2 fallen steigt der Fehler, der mit der Vorhersage der Versagenszeit assoziiert ist, auf über 100% an. Dieses Ergebnis interpretiere ich als eine Funktion der niedrigen Effizienz, mit der Verformungsenergie freigesetzt werden kann, wenn wenige oder keine Heterogeneitäten (Porosität) als Schwachstellen im Material vorhanden sind. Dies könnte zu der Frage beitragen, warum Versagensvorhersage an aktiven Vulkanen bisher zu unterschiedlich guten Ergebnissen geführt hat. Insbesondere zeigen meine Beobachtungen systematisch, dass ein tiefes Verständnis der Materialeigenschaften unerlässlich ist. Ich möchte daher betonen, dass die empirischen Vorhersagemodelle besser mit mechanischen Parametern, wie Versagenskriterien für heterogene Materialien, gekoppelt werden sollten, mit Auswirkungen für einen grossen Bereich der material-wissenschaftlichen Disziplinen.Le volcanisme explosif est l'un des phénomènes de fracturation matérielle les plus catastrophiques qui soient. Durant son ascension dans le conduit volcanique, le magma se fragmente en particules qui, une fois déposées à une température excédant celle de la transition vitreuse du liquide interstitiel, vont se souder de façon visqueuse. Les tuffisites formées dans le conduit ainsi que les cataclasites formées le long de ses parois, mais aussi les cendres déposées à partir de coulées pyroclastiques exceptionnellement chaudes, sont autant d'exemples pour lesquels du frittage par écoulement visqueux est possible. Comprendre la cinétique du frittage ainsi que les échelles de temps caractéristiques liées à la densification du magma est par conséquent crucial, afin de pouvoir identifier les périodes de dégazage dans les conduits et les dépôts volcaniques. Le frittage visqueux est accompagné d'un recouvrement de la résistance mécanique du matériel vers celle d'un magma dense et exempt de pores. Il est également crucial de comprendre les mécanismes liés au dommage ainsi que le comportement sismique avant la rupture des produits volcaniques frittés pour l'application de modèles micromécaniques et de lois de prédiction de la cassure matérielle. Un verre standard réduit en poudre et des billes de verre industrielles ont été utilisé, afin d'étudier les mécanismes de frittage à pression ambiante ainsi que l'évolution temporelle de la structure des pores connectés et isolés. J'observe que le frittage, sous faible contrainte axiale, est essentiellement contrôlé par la taille des particules, la tension de surface et la viscosité du verre. Je constate que, à une température donnée, les échelles de temps, pour lesquelles la densité du magma se rapproche de celle du verre pur, dépendent de la surface de contact entre les particules, qui peut être estimée à partir de la forme des particules, du type d'empilement et de la porosité initiale. Les contraintes granulométriques sur le matériel de départ indiquent que c'est la fraction des fines particules qui contrôle le taux de frittage : ces particules se regroupent dans les espaces créés entre les plus grandes particules et ont une force d'entraînement par frittage plus élevée en raison du rapport entre l'énergie de surface et le volume plus important. En conséquence, la série d'échantillons obtenus par frittage visqueux possède une gamme de microstructures, puisque ce processus favorise la réduction du volume des pores par l'amalgamation des particules. Au sein d'un volcan, la présence de magma nouvellement fritté pourra alors contribuer davantage au colmatage du conduit et ses propriétés mécaniques auront une incidence sur la fragmentation magmatique ainsi que sur les signaux précurseurs associés. Cette considération m'a permis, d'une part, d'étudier l'effet du frittage sur la contrainte mécanique nécessaire pour engendrer la rupture macroscopique des échantillons synthétisés et, d'autre part, à évaluer la capacité des signaux microcosmiques précurseurs à être utilisés pour prédire la cassure, à des conditions de pression et de température pertinentes pour les conduits volcaniques peu profonds. À cette fin, les échantillons ont été soumis à des essais mécaniques pour lesquels une vitesse constante de déformation ainsi qu'une température correspondant À la zone de transition vitreuse du matériel ont été appliqué. Deux capteurs d'émission acoustique ont été utilisé pour surveiller la fracturation matérielle. Les données acoustiques ont ensuite été exploité, afin d'évaluer de façon systématique la précision de la méthode de prédiction de la cassure en fonction de l'hétérogénéité (la porosité est utilisée comme quantification du degré d'hétérogénéité matérielle), car elle correspond à la zone de nucléation des fractures. Dans le régime élastique, le modèle de fissuration depuis les pores décrit correctement le pic de stress mécanique au moment de la rupture. Je montre que la méthode de prédiction de la cassure indique une erreur absolue comprise entre 0 et 15 % pour les porosités supérieures à 0,2. Cependant, lorsque les porosités sont inférieures à 0,2, l'erreur augmente jusque plus de 100 %. J'interprète ces résultats en termes de faible efficacité avec laquelle l'énergie mécanique accumulée peut être libérée dans le cas où il y a peu ou pas d'hétérogénéités à partir desquelles les fissures peuvent se propager. Ces observations mettent en lumière les questions sur l'efficacité de la méthode de prédiction de la cassure lorsqu'appliquée aux volcans actifs. Plus particulièrement, elles démontrent de façon systématique qu'une bonne compréhension des propriétés physiques et mécaniques du matériel est fondamentale. Ainsi, je tiens à souligner la nécessité d'un meilleur couplage des modèles empiriques de prédiction de la cassure avec des paramètres mécaniques, tel que des critères de rupture des matériaux hétérogènes, et pointer en direction des implications pour un large éventail de disciplines axées sur la science des matériaux

    The life and death of heterogeneity in magmas

    Get PDF
    Explosive volcanism is one of the most catastrophic material failure phenomena. During magma ascent, fragmentation produces particulate magma, which, if deposited above the glass transition of the interstitial melt, will sinter viscously. In-conduit tuffisites, conduit wall breccias and ash deposited from exceptionally hot pyroclastic flows are scenarios in which sintering by viscous flow is possible. Therefore, understanding the kinetics of sintering and the characteristic timescales over which magma densifies are critical to understanding the degassing timeframe in conduits and deposits. Viscous sintering is accompanied by a recovery of material strength towards that of a pore-free, dense magma. Understanding damage mechanisms and seismic behaviour prior to failure of sintered volcanic products are also crucial for the application of micromechanical models and material failure forecasting laws. Powdered standard glass and industrial glass beads have been used to explore sintering mechanisms at ambient pressure conditions and temporal evolution of connected and isolated pore-structure. I observe that sintering under low axial stress is essentially particle size, surface tension and melt viscosity controlled. I found that the timescales over which the bulk density approaches that of a pore-free melt at a given temperature is dependent on the particle-contact surface area, which can be estimated from the particle shape, the packing type and the initial total porosity. Granulometric constraint on the starting material indicates that the fraction of finer particles controls the rate of sintering as they cluster in pore spaces between larger particles and have a higher driving force for sintering due to their higher surface energy to volume ratio. Consequently, the resultant sample suite has a range of microstructures because the viscous sintering process promotes a fining of pores and a coarsening of particles. In a volcano, newly formed sintering material will then further contribute to magma-plugging of the conduit and its mechanical properties will affect magma rupture and its associated precursory signals. This consideration permitted me to explore the effect of sintering on the stress required for dynamic macroscopic failure of synthesised samples and assess the ability of precursory microseismic signals to be used as a failure forecast proxy at conditions relevant to shallow volcanic conduits. To this end, the samples were subjected to mechanical tests under a constant rate of deformation and at a temperature in the region of the material glass transition. A dual acoustic emission rig was employed to track the occurrence of brittle fracturing. The monitored acoustic dataset was then exploited to systematically assess the accuracy of the failure forecasting method as a function of heterogeneity (cast as porosity) since it acts as nucleating site for fracture propagation. The pore-emanating crack model describes well the peak stress at failure in the elastic regime for these materials. I show that the failure forecast method predicts failure within 0-15% error at porosities >0.2. However, when porosities are 100%. I interpret these results as a function of the low efficiency with which strain energy can be released in the scenario where there are few or no heterogeneities from which cracks can propagate. These observations shed light on questions surrounding the variable efficacy of the failure forecast method applied to active volcanoes. In particular, they provide a systematic demonstration of the fact that a good understanding of material properties is required. Thus I wish to emphasise the need for a better coupling of empirical failure forecasting models with mechanical parameters, such as failure criteria for heterogeneous materials, and point to the implications of this for a broad range of material-based disciplines.Explosiver Vulkanismus ist eines der drastischsten Phänomene, die ursächlich durch Materialversagen ausgelöst werden. Während seines Aufstiegs in der Kruste fragmentiert Magma zu partikelgrossen Magmafetzen, die, sofern überhalb des Glassübergangs abgelagert, viskos sintern können. Sintern durch viskosen Fluss wird bei Ablagerung von Intra-Schlot Tuffisiten, Schlotwand Brekzien und Asche aus extrem heissen pyroklastischen Ströme erwartet. Die Eingrenzung der Kinetik des Sinterns, sowie der charakteristischen Zeitskalen der Verdichtung von Magma, sind daher essentiell um den Zeitrahmen des Entgasens von Schloten und Ablagerungen besser zu verstehen. Viskoses Sintern wird begleitet von einer Erhöhung der Material Festigkeit zu der eines poren-freien, dichten Magmas. Weiterhin ist es wichtig, Beschädigungsmechanismen und das seismische Verhalten der vulkanischen Produkte kurz vor dem Materialversagen zu verstehen, um die Anwendung von mikromechanischen Modellen und die Vorhersage von Materialversagen zu ermöglichen. Glasstandard in pulverisierter Form und industrielle Glaskugeln wurden herangezogen um Sintermechanismen bei Atmosphärendruck und die zeitliche Entwicklung verbundener und isolierter Porenstrukturen zu erforschen. Ich beobachtete, dass Sintern bei niedriger axialer Belastung hauptsächlich durch Partikelgrösse, Oberflächenspannung und Schmelzviskosität kontrolliert wird. Weiterhin ist die Zeitskala, über die die Gesamtdichte bei einer definierten Temperatur die einer poren-freien Schmelze erreicht, abhängig von der Partikel-Kontakt Oberfläche, die über Partikelform, die Partikelpackung und die initiale Gesamtporosität abgeschätzt werden kann. Korngrössenanalysen der Anfangsmaterialien deuten an, dass die Feinfraktion die Rate des Sinterns kontrolliert, da der Feinanteil in den Zwickeln der grösseren Partikel Anhäufungen bilden kann und ausserdem ein höheres Sinterpotential durch sein grösseres Oberflächen-Volumen Verhältnis aufweist. Dementsprechend weisen die hergestellten Proben eine Reihe von Mikrostrukturen auf, die durch Porenverkleinerung und Kornvergröberung während des viskosen Sinterns hervorgerufen wurden. Dadurch wird neu-gebildetes, sinterndes Material innerhalb eines Vulkans das Verstopfen des Schlotes fördern, und die mechanischen Eigenschaften dieses Materials beeinflussen die Fragmentation des eigentlichen Magmas und der assoziierten Vorwarnsignale. Aufgrund dieser Betrachtung betrachte ich den Effekt des Sinterns auf die für dynamisches makroskopisches Versagen unserer synthetisierten Proben nötige Belastung näher. Dies geschah, um das Potential der mikroseismischen Signale bei Bedingungen innerhalb eines Vulkanschlots als Vorhersagekriterium für Materialversagen abzuschätzen. Dazu wurden die Proben bei konstanter Deformationsrate und Temperaturen in der Nähe des Glasübergangs mechanischen Tests unterzogen. Das Auftreten von Sprödbruchverhalten wurde mithilfe eines dualen Schallemissionsgerätes aufgezeichnet. Der resultierende akustische Datensatz wurde dann herangezogen, um die Genauigkeit der Vorhersagemethode für das Versagen als Funktion der Probenheterogeneität (also Porosität) einzugrenzen, da Porosität innerhalb eines Materials die Entstehung von Bruchstellen fördert. In diesem Zusammenhang beschreibt das Modell der "Pore-emanating cracks" für diese Materialien die Maximalbelastung bei Versagen im elastischen Regime. Ich zeige, dass Versagen bei Porositäten >0,2 innerhalb eines Fehler von 0-15% vorhergesagt werden kann. Sobald die Porositäten unter einen Wert von 0,2 fallen steigt der Fehler, der mit der Vorhersage der Versagenszeit assoziiert ist, auf über 100% an. Dieses Ergebnis interpretiere ich als eine Funktion der niedrigen Effizienz, mit der Verformungsenergie freigesetzt werden kann, wenn wenige oder keine Heterogeneitäten (Porosität) als Schwachstellen im Material vorhanden sind. Dies könnte zu der Frage beitragen, warum Versagensvorhersage an aktiven Vulkanen bisher zu unterschiedlich guten Ergebnissen geführt hat. Insbesondere zeigen meine Beobachtungen systematisch, dass ein tiefes Verständnis der Materialeigenschaften unerlässlich ist. Ich möchte daher betonen, dass die empirischen Vorhersagemodelle besser mit mechanischen Parametern, wie Versagenskriterien für heterogene Materialien, gekoppelt werden sollten, mit Auswirkungen für einen grossen Bereich der material-wissenschaftlichen Disziplinen.Le volcanisme explosif est l'un des phénomènes de fracturation matérielle les plus catastrophiques qui soient. Durant son ascension dans le conduit volcanique, le magma se fragmente en particules qui, une fois déposées à une température excédant celle de la transition vitreuse du liquide interstitiel, vont se souder de façon visqueuse. Les tuffisites formées dans le conduit ainsi que les cataclasites formées le long de ses parois, mais aussi les cendres déposées à partir de coulées pyroclastiques exceptionnellement chaudes, sont autant d'exemples pour lesquels du frittage par écoulement visqueux est possible. Comprendre la cinétique du frittage ainsi que les échelles de temps caractéristiques liées à la densification du magma est par conséquent crucial, afin de pouvoir identifier les périodes de dégazage dans les conduits et les dépôts volcaniques. Le frittage visqueux est accompagné d'un recouvrement de la résistance mécanique du matériel vers celle d'un magma dense et exempt de pores. Il est également crucial de comprendre les mécanismes liés au dommage ainsi que le comportement sismique avant la rupture des produits volcaniques frittés pour l'application de modèles micromécaniques et de lois de prédiction de la cassure matérielle. Un verre standard réduit en poudre et des billes de verre industrielles ont été utilisé, afin d'étudier les mécanismes de frittage à pression ambiante ainsi que l'évolution temporelle de la structure des pores connectés et isolés. J'observe que le frittage, sous faible contrainte axiale, est essentiellement contrôlé par la taille des particules, la tension de surface et la viscosité du verre. Je constate que, à une température donnée, les échelles de temps, pour lesquelles la densité du magma se rapproche de celle du verre pur, dépendent de la surface de contact entre les particules, qui peut être estimée à partir de la forme des particules, du type d'empilement et de la porosité initiale. Les contraintes granulométriques sur le matériel de départ indiquent que c'est la fraction des fines particules qui contrôle le taux de frittage : ces particules se regroupent dans les espaces créés entre les plus grandes particules et ont une force d'entraînement par frittage plus élevée en raison du rapport entre l'énergie de surface et le volume plus important. En conséquence, la série d'échantillons obtenus par frittage visqueux possède une gamme de microstructures, puisque ce processus favorise la réduction du volume des pores par l'amalgamation des particules. Au sein d'un volcan, la présence de magma nouvellement fritté pourra alors contribuer davantage au colmatage du conduit et ses propriétés mécaniques auront une incidence sur la fragmentation magmatique ainsi que sur les signaux précurseurs associés. Cette considération m'a permis, d'une part, d'étudier l'effet du frittage sur la contrainte mécanique nécessaire pour engendrer la rupture macroscopique des échantillons synthétisés et, d'autre part, à évaluer la capacité des signaux microcosmiques précurseurs à être utilisés pour prédire la cassure, à des conditions de pression et de température pertinentes pour les conduits volcaniques peu profonds. À cette fin, les échantillons ont été soumis à des essais mécaniques pour lesquels une vitesse constante de déformation ainsi qu'une température correspondant À la zone de transition vitreuse du matériel ont été appliqué. Deux capteurs d'émission acoustique ont été utilisé pour surveiller la fracturation matérielle. Les données acoustiques ont ensuite été exploité, afin d'évaluer de façon systématique la précision de la méthode de prédiction de la cassure en fonction de l'hétérogénéité (la porosité est utilisée comme quantification du degré d'hétérogénéité matérielle), car elle correspond à la zone de nucléation des fractures. Dans le régime élastique, le modèle de fissuration depuis les pores décrit correctement le pic de stress mécanique au moment de la rupture. Je montre que la méthode de prédiction de la cassure indique une erreur absolue comprise entre 0 et 15 % pour les porosités supérieures à 0,2. Cependant, lorsque les porosités sont inférieures à 0,2, l'erreur augmente jusque plus de 100 %. J'interprète ces résultats en termes de faible efficacité avec laquelle l'énergie mécanique accumulée peut être libérée dans le cas où il y a peu ou pas d'hétérogénéités à partir desquelles les fissures peuvent se propager. Ces observations mettent en lumière les questions sur l'efficacité de la méthode de prédiction de la cassure lorsqu'appliquée aux volcans actifs. Plus particulièrement, elles démontrent de façon systématique qu'une bonne compréhension des propriétés physiques et mécaniques du matériel est fondamentale. Ainsi, je tiens à souligner la nécessité d'un meilleur couplage des modèles empiriques de prédiction de la cassure avec des paramètres mécaniques, tel que des critères de rupture des matériaux hétérogènes, et pointer en direction des implications pour un large éventail de disciplines axées sur la science des matériaux

    A Scaling for the Permeability of Loose Magma Mush Validated Using X‐Ray Computed Tomography of Packed Confectionary in 3D and Estimation Methods From 2D Crystal Shapes

    Get PDF
    Melt percolation through partially molten “mushy” regions of the crust underpins models for magma migration, accumulation, and processes that prime systems for eruption. Knowledge of the hydraulic properties of magma mush, specifically permeability, is required for accurate predictions of melt migration rates and accumulation timescales. Previous studies, validated for cuboidal crystal analogs, show that crystal shape exerts a first‐order control on the permeability, and is tested here for anisometric natural crystal shapes using X‐ray CT 3D data sets of magma mush analogs made from packed confectionary particles arranged randomly. We use a lattice‐Boltzmann fluid flow simulation tool to determine the permeability of the analogue melt phase network between the packed particles. We find excellent agreement with our data sets to within ∼0.1 log units, when the specific surface area is measured. To extend this to more typical cases where the specific surface area is unknown, we use the shape and size of the objects determined in both 3D and 2D to estimate the specific surface area assuming a cuboid approximation. These approximate solutions give good results to within ∼0.5 log units of the measured permeability and offer a method by which permeability could be estimated from a thin section of a cumulate or pluton sample. Our shape‐sensitive approach is more accurate than existing models for permeability of magma mush, most approximating natural crystal shapes to spheres. We therefore propose that these could be implemented in dynamic magma mush models for melt movement in the crust to produce more accurate flux predictions

    Dehydration‐driven mass loss from packs of sintering hydrous silicate glass particles

    Get PDF
    Glass sintering involves the densification of packs of particles and the expulsion of the interparticle pore gas. The pore space begins as a convolute interconnected interparticle network, and ends as distributed isolated bubbles; two configurations that are separated by the percolation threshold. Here, we perform experiments in which (i) the particles are initially saturated in H2O at 871 K, and (ii) they are then heated non-isothermally at different rates to temperatures in excess of 871 K. In step (ii), H2O becomes supersaturated and the particles diffusively lose mass as they sinter together. We use thermogravimetry to track the loss of mass with time. We find that the mass loss is initially well predicted by solutions to Fick's second law in spherical coordinates with the appropriate material and boundary conditions. However, as the sintering pack crosses the percolation threshold at a time predicted by sintering theory, we find that the mass loss deviates from simple diffusional solutions. We interpret this to be the result of an increase in the diffusion distance from the particle-scale to the scale of the sintering pack itself. Therefore, we conclude that the open- to closed-system transition that occurs at the percolation threshold is a continuous, but rapid jump for diffusive and other transport properties. We use a capillary Peclet number Pc to parameterize for this transition, such that at low Pc diffusive equilibrium is achieved before the sintering-induced transition to closed system, whereas at high Pcthere is a “diffusion crisis” and disequilibrium may be maintained for longer relative timescales that depend on the system size

    The physics of dancing peanuts in beer

    Get PDF
    In Argentina, some people add peanuts to their beer. Once immersed, the peanuts initially sink part way down into the beer before bubbles nucleate and grow on the peanut surfaces and remain attached. The peanuts move up and down within the beer glass in many repeating cycles. In this work, we propose a physical description of this dancing peanuts spectacle. We break down the problem into component physical phenomena, providing empirical constraint of each: (i) heterogeneous bubble nucleation occurs on peanut surfaces and this is energetically preferential to nucleation on the beer glass surfaces; (ii) peanuts enshrouded in attached bubbles are positively buoyant in beer above a critical attached gas volume; (iii) at the beer top surface, bubbles detach and pop, facilitated by peanut rotations and rearrangements; (iv) peanuts containing fewer bubbles are then negatively buoyant in beer and sink; and (v) the process repeats so long as the beer remains sufficiently supersaturated in the gas phase for continued nucleation. We used laboratory experiments and calculations to support this description, including constraint of the densities and wetting properties of the beer–gas–peanut system. We draw analogies between this peanut dance cyclicity and industrial and natural processes of wide interest, ultimately concluding that this bar-side phenomenon can be a vehicle for understanding more complex, applied systems of general interest and utility

    The rheological response of magma to nanolitisation

    Get PDF
    Viscosity exerts a fundamental control on magmatic kinetics and dynamics, controlling magma ascent, eruptive style, and the emplacement of lava. Nanolites – crystals smaller than a micron – are thought to affect magma viscosity, but the underlying mechanisms for this remain unclear. Here, we use a cylinder compression creep technique to measure the viscosity of supercooled silicate liquids with different amounts of iron (0–20 wt% FeOtot) as a function of temperature, applied shear stress, and time. Sample viscosity was independent on the applied shear stresses, and as expected, melt viscosity decreases as temperature is increased, but only until a critical temperature where a time-dependent increase in viscosity occurs for samples contaning 6.0 wt% FeOtot or more. The magnitude of this increase is controlled by the melt iron content. At constant temperature, these changes are substantial and can reach up to three orders of magnitude for the sample with the most iron. Using transmission electron microscopy, X-ray diffraction, and viscosity modelling, we conclude that this viscosity increase is caused by the formation of nanolites. By using scaling approaches to test suspension effects with and without crystal aggregation, we conclude that the nanolites have only a minimal direct physical effect on the observed viscosity change. Rather, our models show that it is the chemical shift in the groundmass silicate melt composition associated with non-stoichiometric crystallisation that dominates the observed viscosity increase. These findings suggest that iron-rich silicates may encounter chemical viscosity jumps once certain elements are removed from the melt phase to form nanolites. Our work demonstrates an underlying mechanism for the role played by nanolites in viscosity changes of magmas

    Rheology of a sodium‐molybdenum borosilicate melt undergoing phase separation

    Get PDF
    During glass production, phase separation can result in the formation of suspended liquid droplets, which can cause changes in the system rheology. In nuclear waste vitrification context, some new glassy matrices may present this phase separation matter, but the mechanisms controlling the viscosity changes have not yet been determined. Here, we measure the viscosity of a sodium‐borosilicate melt containing dissolved MoO3 at different temperatures and subject to different applied shear strain rates. We observe that (i) the viscosity increases sharply as the temperature decreases and (ii) at any constant temperature below 1000°C, the system presents non‐Newtonian response. Using transmission electron microscope observations coupled with viscosity calculations, we interpret the cause of the observed changes as the result of phase separation. We show that the viscosity increase on cooling is in excess of the predicted temperature dependence for a homogeneous melt of the starting composition. The increase is due to the formation of a second phase and is controlled by chemical and structural modifications of the matrix during the loss of the elements that form the droplets. This work provides insights into the rheology of a system composed of two composition sets due to a miscibility gap

    A model for permeability evolution during volcanic welding

    Get PDF
    Volcanic ash and pyroclasts can weld when deposited hot by pyroclastic density currents, in near-vent fall deposits, or in fractures in volcano interiors. Welding progressively decreases the permeability of the particle packs, influencing a range of magmatic and volcanic processes, including magma outgassing, which is an important control on eruption dynamics. Consequently, there is a need for a quantitative model for permeability evolution during welding of ash and pyroclasts under the range of conditions encountered in nature. Here we present in situ experiments in which hydrous, crystal-free, glassy pyroclasts are imaged via x-ray tomography during welding at high temperature. For each 3D dataset acquired, we determine the porosity, Darcian gas permeability, specific surface area, and pore connectivity. We find that all of these quantities decrease as a critical percolation threshold is approached. We develop a constitutive mathematical model for the evolution of permeability in welding volcanic systems based on percolation theory, and validate the model against our experimental data. Importantly, our model accounts for polydispersivity of the grainsize in the particle pack, the pressures acting on the pack, and changes in particle viscosity arising from degassing of dissolved H2O during welding. Our model is theoretically grounded and has no fitting parameters, hence it should be valid across all magma compositions. The model can be used to predict whether a cooling pyroclast pack will have sufficient time to weld and to degas, the scenarios under which a final deposit will retain a permeable network, the timescales over which sealing occurs, and whether a welded deposit will have disequilibrium or equilibrium H2O content. A user-friendly implementation of the model is provided

    A reappraisal of explosive–effusive silicic eruption dynamics: syn-eruptive assembly of lava from the products of cryptic fragmentation

    Get PDF
    Silicic volcanic eruptions range in style from gently effusive to highly explosive, and may switch style unpredictably during a single eruption. Direct observations of subaerial rhyolitic eruptions (Chaiten 2008, Cordón Caulle 2011–2012, Chile) challenged long-standing paradigms of explosive and effusive eruptive styles and led to the formulation of new models of hybrid activity. However, the processes that govern such hybrid explosive–effusive activity remain poorly understood. Here, we bring together observations of the well-studied 2011–2012 Cordón Caulle eruption with new textural and petrologic data on erupted products, and video and still imagery of the eruption. We infer that all of the activity – explosive, effusive, and hybrid – was fed by explosive fragmentation at depth, and that effusive behaviour arose from sticking and sintering, in the shallow vent region, of the clastic products of deeper, cryptic fragmentation. We use a scaling approach to determine that there is sufficient time available, during emplacement, for diffusive pyroclast degassing and sintering to produce a degassed plug that occludes the shallow conduit, feeding clastogenic, apparently effusive, lava-like deposits. Based on evidence from Cordón Caulle, and from other similar eruptions, we further argue that hybrid explosive–effusive activity is driven by episodic gas-fracking of the occluding lava plug, fed by the underlying pressurized ash- and pyroclast-laden region. The presence of a pressurized pocket of ash-laden gas within the conduit provides a mechanism for generation of harmonic tremor, and for syn-eruptive laccolith intrusion, both of which were features of the Cordón Caulle eruption. We conclude that the cryptic fragmentation models is more consistent with available evidence than the prevailing model for effusion of silicic lava that assume coherent non-fragmental rise of magma from depth to the surface without wholesale explosive fragmentation
    corecore