7 research outputs found

    Functionalized tetrapodal diazatriptycenes for electrostatic dipole engineering in n-type organic thin film transistors

    Get PDF
    V.R., F.S.B., S.H., M.M., M.-M.B., S.H., J.F., W.K., W.J., A.K., A.P., U.H.F.B., and K.M. acknowledge the German Federal Ministry of Education and Research (BMBF) for financial support within the INTERPHASE project (nos. 13N13656, 13N13657, 13N13658, 13N13659). V.R. thanks the German Research Foundation for financial support within the SFB1249 project and the Heidelberg Graduate School of Fundamental research.The authors also appreciate financial support by the German Research Foundation (grant ZH 63/39-1) and by the DAAD-ACEH Scholarship of Excellence (A.A.).A diazatriptycene‐based tetrapodal scaffold with thiol anchors enforces a nearly upright orientation of functional groups, introduced to its quinoxaline subunit, with respect to the substrate upon formation of self‐assembled monolayers (SAMs). Substitution with electron‐withdrawing fluorine and cyano as well as electron‐rich dimethylamino substituents allows tuning of the molecular dipole and, consequently, of the work function of gold over a range of 1.0 eV (from 3.9 to 4.9 eV). The properties of the SAMs are comprehensively investigated by infrared reflection absorption spectroscopy, near edge X‐ray absorption fine structure spectroscopy, and X‐ray photoelectron spectroscopy. As prototypical examples for the high potential of the presented SAMs in devices, organic thin‐film transistors are fabricated.Publisher PDFPeer reviewe

    n-type doping of organic semiconductors : immobilization via covalent anchoring

    Get PDF
    We gratefully acknowledge the German Federal Ministry of Education and Research (BMBF) for financial support within the InterPhase project (FKZ 13N13659, 13N13656, 13N13657, and 13N13658).Electrical doping is an important tool in the design of organic devices to modify charge carrier concentration in and Fermi level position of organic layers. The undesired diffusion of dopant molecules within common transport materials adversely affects both lifetime and device performance. To overcome this drawback, we developed a strategy to achieve immobilization of dopants through their covalent attachment to the semiconductor host molecules. Derivatization of the commonly employed n-type dopant 2-(2-methoxyphenyl)-1,3-dimethyl-2,3-dihydro-1H-benzoimidazole (ο-MeO-DMBI) with a phenylazide enables the resulting o-AzBnO-DMBI to photochemically generate a reactive nitrene, which subsequently binds covalently to the host material, 6,6-phenyl-C61-butyric acid methyl ester (PCBM). Both the activation and addition reactions are monitored by mass spectrometry as well as optical and photoelectron spectroscopy. A suppression of desorption and a decrease in volatility of the DMBI derivative in ultrahigh vacuum were observed after activation of a bilayer structure of PCBM and o-AzBnO-DMBI. Electrical measurements demonstrate that the immobilized o-AzBnO-DMBI can (i) dope the PCBM at conductivities comparable to values reported for o-MeO-DMBI in the literature and (ii) yield improved electrical stability measured in a lateral two terminal device geometry. Our immobilization strategy is not limited to the specific system presented herein but should also be applicable to other organic semiconductor–dopant combinations.Publisher PDFPeer reviewe

    Digital studieren

    Get PDF
    Es werden die Möglichkeiten eines modernen, digitalen Fernstudiums vorgestellt und erlĂ€utert. Wichtige Merkmale wie zum Beispiel die Entwicklung eines zeitgleichen Kommunikationssystems oder der Ausbau digitaler StudienfĂŒhrer werden dargestellt und deren Entfaltung gedanklich weitergefĂŒhrt. Ein zusĂ€tzlicher Schwerpunkt liegt auf der Diskussion der Struktur von InformationsaktivitĂ€ten. Deren Struktur verlĂ€uft durch Technologien wie das Internet nicht mehr linear, sondern als vernetztes, multimediales Lernen. Es werden wichtige, finanzielle Voraussetzungen des Blended Learning als Möglichkeit des distanzlosen Fernstudiums benannt, sowie erreichbare Lernziele diskutiert

    Compensation of Oxygen Doping in p‐Type Organic Field‐Effect Transistors Utilizing Immobilized n‐Dopants

    Get PDF
    Poly(3‐hexyl‐thiophene‐2,5‐diyl) (P3HT) is one of the most commonly used materials in organic electronics, yet it is considered to be rather unattractive for organic field‐effect transistors (OFETs) due to its tendency to oxidize under aerobic conditions. Strong p‐doping of P3HT by oxygen causes high off‐currents in such devices opposing the desired high on/off‐ratios. Herein, a new application‐oriented method involving the recently developed immobilizable organic n‐dopant 2‐(2‐((4‐azidobenzyl)oxy)phenyl)‐1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol (o‐AzBnO‐DMBI) is presented allowing to process and operate P3HT OFETs in air. The n‐dopants compensate oxygen doping by trapping generated free holes, thereby rediminishing OFET off‐currents by approximately two orders of magnitude. At the same time, field‐effect mobilities remain high in the order of up to 0.19 cmÂČ V⁻Âč s⁻Âč. Due to the covalent attachment of the dopants to the host matrix after photochemical activation, a drift of the otherwise mobile ions within the device is prevented even at high operating voltages and, thus, hysteresis in the corresponding transfer characteristics is kept low. In this manner, the air instability of P3HT OFETs is successfully resolved paving an auspicious way toward OFET mass production. As the immobilization process employed here is nonspecific with respect to the host material, this strategy is transferable to other p‐type semiconductors

    E-Teams an der Humboldt-UniversitÀt

    Get PDF
    Der Artikel gibt einen Einblick in die sehr verschiedenen Überlegungen und AnsĂ€tze der Institute der Humboldt-UniversitĂ€t, die Nutzung digitaler Medien in der Lehre zu unterstĂŒtzen und zu verankern. Mit den sogenannten E-Teams wurden institutsweite Netzwerke von Ansprechpartnern aufgebaut. Diese E-Teams sind eine Besonderheit in der Strategie der Humboldt-UniversitĂ€t zur Verankerung von E-Learning und Multimedia in der Lehre. Hier arbeiten »Aktive« und »FunktionĂ€re« gemeinsam an Lösungen, die fĂŒr das Fach passen und nutzbar sind. Aufbauend auf zentraler Infrastruktur können so flexibel an den fachlichen Kontext angepasste UnterstĂŒtzungsangebote aufgebaut werden. Zehn der E-Teams stellen exemplarisch ihre Arbeitsweise und Angebote vor
    corecore