26 research outputs found
Genome-scale computational analysis of DNA curvature and repeats in Arabidopsis and rice uncovers plant-specific genomic properties
<p>Abstract</p> <p>Background</p> <p>Due to its overarching role in genome function, sequence-dependent DNA curvature continues to attract great attention. The DNA double helix is not a rigid cylinder, but presents both curvature and flexibility in different regions, depending on the sequence. More in depth knowledge of the various orders of complexity of genomic DNA structure has allowed the design of sophisticated bioinformatics tools for its analysis and manipulation, which, in turn, have yielded a better understanding of the genome itself. Curved DNA is involved in many biologically important processes, such as transcription initiation and termination, recombination, DNA replication, and nucleosome positioning. CpG islands and tandem repeats also play significant roles in the dynamics and evolution of genomes.</p> <p>Results</p> <p>In this study, we analyzed the relationship between these three structural features within rice (<it>Oryza sativa</it>) and Arabidopsis (<it>Arabidopsis thaliana</it>) genomes. A genome-scale prediction of curvature distribution in rice and Arabidopsis indicated that most of the chromosomes of both genomes have maximal chromosomal DNA curvature adjacent to the centromeric region. By analyzing tandem repeats across the genome, we found that frequencies of repeats are higher in regions adjacent to those with high curvature value. Further analysis of CpG islands shows a clear interdependence between curvature value, repeat frequencies and CpG islands. Each CpG island appears in a local minimal curvature region, and CpG islands usually do not appear in the centromere or regions with high repeat frequency. A statistical evaluation demonstrates the significance and non-randomness of these features.</p> <p>Conclusions</p> <p>This study represents the first systematic genome-scale analysis of DNA curvature, CpG islands and tandem repeats at the DNA sequence level in plant genomes, and finds that not all of the chromosomes in plants follow the same rules common to other eukaryote organisms, suggesting that some of these genomic properties might be considered as specific to plants.</p
Epichloë Fungal Endophytes Influence Seed-Associated Bacterial Communities
Seeds commonly harbour diverse bacterial communities that can enhance the fitness of future plants. The bacterial microbiota associated with mother plant’s foliar tissues is one of the main sources of bacteria for seeds. Therefore, any ecological factor influencing the mother plant’s microbiota may also affect the diversity of the seed’s bacterial community. Grasses form associations with beneficial vertically transmitted fungal endophytes of genus Epichloë. The interaction of plants with Epichloë endophytes and insect herbivores can influence the plant foliar microbiota. However, it is unknown whether these interactions (alone or in concert) can affect the assembly of bacterial communities in the produced seed. We subjected Lolium multiflorum plants with and without its common endophyte Epichloë occultans (E+, E-, respectively) to an herbivory treatment with Rhopalosiphum padi aphids and assessed the diversity and composition of the bacterial communities in the produced seed. The presence of Epichloë endophytes influenced the seed bacterial microbiota by increasing the diversity and affecting the composition of the communities. The relative abundances of the bacterial taxa were more similarly distributed in communities associated with E+ than E- seeds with the latter being dominated by just a few bacterial groups. Contrary to our expectations, seed bacterial communities were not affected by the aphid herbivory experienced by mother plants. We speculate that the enhanced seed/seedling performance documented for Epichloë-host associations may be explained, at least in part, by the Epichloë-mediated increment in the seed-bacterial diversity, and that this phenomenon may be applicable to other plant-endophyte associations.Fil: Bastías, Daniel A.. Grasslands Research Centre; Nueva ZelandaFil: Bubica Bustos, Ludmila Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Jáuregui, Ruy. Grasslands Research Centre; Nueva ZelandaFil: Barrera, Andrea. Universidad de Talca; ChileFil: Acuña Rodríguez, Ian S.. Universidad de Talca; ChileFil: Molina Montenegro, Marco A.. Universidad de Talca; Chile. Universidad Católica del Norte; Chile. Universidad Católica del Maule; ChileFil: Gundel, Pedro Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Talca; Chil
Precariedad, exclusión social y diversidad funcional (discapacidad): lógicas y efectos subjetivos del sufrimiento social contemporáneo (III). Innovación docente en Filosofía
El PIMCD Precariedad, exclusión social y diversidad funcional (discapacidad): lógicas y efectos subjetivos del sufrimiento social contemporáneo (III). Innovación docente en Filosofía se ocupa de conceptos que generalmente han tendido a ser eludidos en la enseñanza académica de filosofía. Se trata de la tercera edición de un PIMCD que ha venido recibiendo financiación en las últimas convocatorias PIMCD UCM, de los que se han derivado publicaciones colectivas publicadas por Ediciones Complutense y Siglo XXI
Conservation of DNA curvature signals in regulatory regions of prokaryotic genes
DNA curvature plays a well-characterized role in many transcriptional regulation mechanisms. We present evidence for the conservation of curvature signals in putative regulatory regions of several archaeal and eubacterial genomes. Genes with highly curved upstream regions were identified in orthologous groups, based on the annotations of the Cluster of Orthologous Groups of proteins (COG) database. COGs possessing a significant number of genes with curvature signals were analyzed, and conserved properties were found in several cases. Curvature signals related to regulatory sites, previously described in single organisms, were located in a broad spectrum of bacterial genomes. Global regulatory proteins, such as HU, IHF and FIS, known to bind to curved DNA and to be autoregulated, were found to present conserved DNA curvature signals in their regulatory regions, emphasizing the fact that structural parameters of the DNA molecule are conserved elements in the process of transcriptional regulation of some systems. It is currently an open question whether these diverse systems are part of an integrated global regulatory response in different microorganisms
Linking microbial community and catabolic gene structures during the adaptation of three contaminated soils under continuous long term pollutant stress.
Three types of contaminated soil from three geographically different areas were subjected to a constant supply of benzene or benzene/toluene/ethylbenzene/xylenes for a period of 3 months. Different to the soil from Brazil (BRA) and Switzerland (SUI), the Czech Republic (CZE) soil which was previously subjected to intensive in-situ bioremediation displayed only negligible changes in community structure. BRA and SUI soil samples showed a clear succession of phylotypes. A rapid response to benzene stress was observed whereas the response to BTEX pollution was significantly slower. After extended incubation, actinobacterial phylotypes were increasing in relative abundance, indicating their superior fitness to pollution stress. Commonalities, but also differences in the phylotypes were observed. Catabolic gene surveys confirmed the enrichment of actinobacteria by identifying the increase of actinobacterial genes involved in the degradation of pollutants. Proteobacterial phylotypes were increasing in relative abundance in SUI microcosms after short-term stress with benzene, where catabolic gene surveys indicated metabolic routes enriched. Interestingly, CZE soil, despite staying constant in community structure, showed a change in the metabolic net, indicating that a highly adapted community has been enriched, which had to adapt its gene pool to meet novel challenges
Exploring the transcriptome of Staphylococcus aureus in its natural niche
Staphylococcus aureus is an important human pathogen and commensal, where the human nose is the predominant reservoir. To better understand its behavior in this environmental niche, RNA was extracted from the anterior nares of three documented S. aureus carriers and the metatranscriptome analyzed by RNAseq. In addition, the in vivo transcriptomes were compared to previously published transcriptomes of two in vitro grown S. aureus strains. None of the in vitro conditions, even growth in medium resembling the anterior nares environment, mimicked in vivo conditions. Survival in the nose was strongly controlled by the limitation of iron and evident by the expression of iron acquisition systems. S. aureus populations in different individuals clearly experience different environmental stresses, which they attempt to overcome by the expression of compatible solute biosynthetic pathways, changes in their cell wall composition and synthesis of general stress proteins. Moreover, the expression of adhesins was also important for colonization of the anterior nares. However, different S. aureus strains also showed different in vivo behavior. The assessment of general in vivo expression patterns and commonalities between different S. aureus strains will in the future result in new knowledge based strategies for controlling colonization
Application of a novel “pan-genome”-based strategy for assigning RNAseq transcript reads to Staphylococcus aureus strains
Understanding the behaviour of opportunistic pathogens such as Staphylococcus aureus in their natural human niche holds great medical interest. With the development of sensitive molecular methods and deep-sequencing technology, it is now possible to robustly assess the global transcriptome of bacterial species in their human habitat. However, as the genomes of the colonizing strains are often not available compiling the pan-genome for the species of interest may provide an effective method to reliably and rapidly compile the transcriptome of a bacterial species. The pan-genome of S. aureus and its associated core and accessory components were compiled based on 25 genomes and comprises a total of 65,557 proteins clustering into 4,198 Orthologous Groups (OGs). The generated gene catalogue was used to assign RNAseq-derived sequence reads to S. aureus in a variety of in vitro and in vivo samples. In all cases, the number of reads that could be assigned to S. aureus was greater using the OG database than using a reference genome. Growth of two S. aureus strains in synthetic nasal medium confirmed that both strains experienced strong iron starvation. Traits such as purine metabolism appeared to be more affected in a typical nasal colonizer than in a strain representative of the S. aureus USA300 lineage. Mapping sequencing reads from a metatranscriptome generated from the human anterior nares allowed the identification of genes highly expressed by S. aureus in vivo. The OG database generated in this study represents a useful tool to obtain a snapshot of the functional attributes of S. aureus under different in vitro and in vivo conditions. The approach proved to be advantageous to assign sequencing reads to bacterial strains when RNAseq data is derived from samples where strain information and/or the corresponding genome/s are unavailable
Inoculum selection is crucial to ensure operational stability in anaerobic digestion
Anaerobic digestion is considered a key technology for the future bio-based economy. The microbial consortium carrying out the anaerobic digestion process is quite complex, and its exact role in terms of "elasticity", i.e., the ability to rapidly adapt to changing conditions, is still unknown. In this study, the role of the initial microbial community in terms of operational stability and stress tolerance was evaluated during a 175-day experiment. Five different inocula from stable industrial anaerobic digesters were fed a mixture of waste activated sludge and glycerol. Increasing ammonium pulses were applied to evaluate stability and stress tolerance. A different response in terms of start-up and ammonium tolerance was observed among the different inocula. Methanosaetaceae were the dominant acetoclastic methanogens, yet, Methanosarcinaceae increased in abundance at elevated ammonium concentrations. A shift from a Firmicutes to a Proteobacteria dominated bacterial community was observed in failing digesters. Methane production was strongly positively correlated with Methanosaetaceae, but also with Bacteria related to Anaerolinaceae, Clostridiales, and Alphaproteobacteria. Volatile fatty acids were strongly positively correlated with Betaproteobacteria and Bacteroidetes, yet ammonium concentration only with Bacteroidetes. Overall, these results indicate the importance of inoculum selection to ensure stable operation and stress tolerance in anaerobic digestion
Application of a Novel "Pan-Genome"-Based Strategy for Assigning RNAseq Transcript Reads to Staphylococcus aureus Strains.
Understanding the behaviour of opportunistic pathogens such as Staphylococcus aureus in their natural human niche holds great medical interest. With the development of sensitive molecular methods and deep-sequencing technology, it is now possible to robustly assess the global transcriptome of bacterial species in their human habitat. However, as the genomes of the colonizing strains are often not available compiling the pan-genome for the species of interest may provide an effective method to reliably and rapidly compile the transcriptome of a bacterial species. The pan-genome of S. aureus and its associated core and accessory components were compiled based on 25 genomes and comprises a total of 65,557 proteins clustering into 4,198 Orthologous Groups (OGs). The generated gene catalogue was used to assign RNAseq-derived sequence reads to S. aureus in a variety of in vitro and in vivo samples. In all cases, the number of reads that could be assigned to S. aureus was greater using the OG database than using a reference genome. Growth of two S. aureus strains in synthetic nasal medium confirmed that both strains experienced strong iron starvation. Traits such as purine metabolism appeared to be more affected in a typical nasal colonizer than in a strain representative of the S. aureus USA300 lineage. Mapping sequencing reads from a metatranscriptome generated from the human anterior nares allowed the identification of genes highly expressed by S. aureus in vivo. The OG database generated in this study represents a useful tool to obtain a snapshot of the functional attributes of S. aureus under different in vitro and in vivo conditions. The approach proved to be advantageous to assign sequencing reads to bacterial strains when RNAseq data is derived from samples where strain information and/or the corresponding genome/s are unavailable