178 research outputs found

    Spitzer IRAC confirmation of z_850-dropout galaxies in the Hubble Ultra Deep Field: stellar masses and ages at z~7

    Full text link
    Using Spitzer IRAC mid-infrared imaging from the Great Observatories Origins Deep Survey, we study z_850-dropout sources in the Hubble Ultra Deep Field. After carefully removing contaminating flux from foreground sources, we clearly detect two z_850-dropouts at 3.6 micron and 4.5 micron, while two others are marginally detected. The mid-infrared fluxes strongly support their interpretation as galaxies at z~7, seen when the Universe was only 750 Myr old. The IRAC observations allow us for the first time to constrain the rest-frame optical colors, stellar masses, and ages of the highest redshift galaxies. Fitting stellar population models to the spectral energy distributions, we find photometric redshifts in the range 6.7-7.4, rest-frame colors U-V=0.2-0.4, V-band luminosities L_V=0.6-3 x 10^10 L_sun, stellar masses 1-10 x 10^9 M_sun, stellar ages 50-200 Myr, star formation rates up to ~25 M_sun/yr, and low reddening A_V<0.4. Overall, the z=7 galaxies appear substantially less massive and evolved than Lyman break galaxies or Distant Red Galaxies at z=2-3, but fairly similar to recently identified systems at z=5-6. The stellar mass density inferred from our z=7 sample is rho* = 1.6^{+1.6}_{-0.8} x 10^6 M_sun Mpc^-3 (to 0.3 L*(z=3)), in apparent agreement with recent cosmological hydrodynamic simulations, but we note that incompleteness and sample variance may introduce larger uncertainties. The ages of the two most massive galaxies suggest they formed at z>8, during the era of cosmic reionization, but the star formation rate density derived from their stellar masses and ages is not nearly sufficient to reionize the universe. The simplest explanation for this deficiency is that lower-mass galaxies beyond our detection limit reionized the universe.Comment: 4 pages, 3 figures, emulateapj, Accepted for publication in ApJ Letter

    The Rest Frame UV to Optical Colors and SEDs of z~4-7 Galaxies

    Full text link
    We use the ultra-deep HUDF09 and the deep ERS data from the HST WFC3/IR camera, along with the wide area Spitzer/IRAC data from GOODS-S to derive SEDs of star-forming galaxies from the rest-frame UV to the optical over a wide luminosity range (M_1500 ~ -21 to M_1500 ~ -18) from z ~ 7 to z ~ 4. The sample contains ~ 400 z ~ 4, ~ 120 z ~ 5, ~ 60 z ~ 6, and 36 prior z ~ 7 galaxies. Median stacking enables the first comprehensive study of very faint high-z galaxies at multiple redshifts (e.g., [3.6] = 27.4 +/- 0.1 AB mag for the M_1500 ~ -18 sources at z ~ 4). At z ~ 4 our faint median-stacked SEDs reach to ~ 0.06 L*(z=4) and are combined with recently published results at high luminosity L > L* that extend to M_1500 ~ -23. We use the observed SEDs and template fits to derive rest frame UV-to-optical colors (U - V) at all redshifts and luminosities. We find that this color does not vary significantly with redshift at a fixed luminosity. The UV-to-optical color does show a weak trend with luminosity, becoming redder at higher luminosities. This is most likely due to dust. At z >~ 5 we find blue colors [3.6]-[4.5] ~ -0.3 mag that are most likely due to rest-frame optical emission lines contributing to the flux in the IRAC filter bandpasses. The scatter across our derived SEDs remains substantial, but the results are most consistent with a lack of any evolution in the SEDs with redshift at a given luminosity. The similarity of the SEDs suggests a self-similar mode of evolution over a timespan from 0.7 Gyr to 1.5 Gyr that encompasses very substantial growth in the stellar mass density in the universe (from ~ 4x10^6 to ~ 2x10^7 Msun Mpc^-3).Comment: 15 pages, 11 figures, 3 tables, submitted to Ap

    The Star Formation Rate Function for Redshift z~4-7 Galaxies: Evidence for a Uniform Build-Up of Star-Forming Galaxies During the First 3 Gyr of Cosmic Time

    Full text link
    We combine recent estimates of dust extinction at z~4-7 with UV luminosity function (LF) determinations to derive star formation rate (SFR) functions at z~4, 5, 6 and 7. SFR functions provide a more physical description of galaxy build-up at high redshift and allow for direct comparisons to SFRs at lower redshifts determined by a variety of techniques. Our SFR functions are derived from well-established z~4-7 UV LFs, UV-continuum slope trends with redshift and luminosity, and IRX-beta relations. They are well-described by Schechter relations. We extend the comparison baseline for SFR functions to z~2 by considering recent determinations of the H{\alpha} and mid-IR luminosity functions. The low-end slopes of the SFR functions are flatter than for the UV LFs, \Delta\alpha\sim+0.13, and show no clear evolution with cosmic time (z~0-7). In addition, we find that the characteristic value SFR* from the Schechter fit to SFR function exhibits consistent, and substantial, linear growth as a function of redshift from ~5 M_sun/yr at z~8, 650 Myr after the Big Bang, to ~100 M_sun/yr at z~2, ~2.5 Gyr later. Recent results at z~10, close to the onset of galaxy formation, are consistent with this trend. The uniformity of this evolution is even greater than seen in the UV LF over the redshift range z~2-8, providing validation for our dust corrections. These results provide strong evidence that galaxies build up uniformly over the first 3 Gyr of cosmic time.Comment: Added an appendix, 1 figure and 3 tables: 9 pages, 5 figures, 4 tables, ApJ, in pres

    Slow Evolution of the Specific Star Formation Rate at z>2: The Impact of Dust, Emission Lines, and A Rising Star Formation History

    Full text link
    We measure the evolution of the specific star formation rate (sSFR = SFR / Mstellar) between redshift 4 and 6 to investigate the previous reports of "constant" sSFR at z>2. We obtain photometry on a large sample of galaxies at z~4-6 located in the GOODS-S field that have high quality imaging from HST and Spitzer. We have derived stellar masses and star formation rates (SFRs) through stellar population modeling of their spectral energy distributions (SEDs). We estimate the dust extinction from the observed UV colors. In the SED fitting process we have studied the effects of assuming a star formation history (SFH) both with constant SFR and one where the SFR rises exponentially with time. The latter SFH is chosen to match the observed evolution of the UV luminosity function. We find that neither the mean SFRs nor the mean stellar masses change significantly when the rising SFR (RSF) model is assumed instead of the constant SFR model. When focusing on galaxies with Mstar ~ 5x10^9 Msun, we find that the sSFR evolves weakly with redshift (sSFR(z) \propto (1+z)^(0.6+/-0.1) Gyr^-1), consistent with previous results and with recent estimates of the sSFR at z~2-3 using similar assumptions. We have also investigated the impact of optical emission lines on our results. We estimate that the contribution of emission lines to the rest-frame optical fluxes is only modest at z~4 and 5 but it could reach ~50% at z~6. When emission lines of this strength are taken into account, the sSFR shows somewhat higher values at high redshifts, according to the relation sSFR(z) \propto (1+z)^(1.0+/-0.1) Gyr^-1, i.e., ~2.3x higher at z~6 than at z~2. However, the observed evolution is substantially weaker than that found at z<2 or that expected from current models (which corresponds to sSFR(z) \propto (1+z)^(2.5) Gyr^-1). -abridged-Comment: 15 pages, 10 figures, 2 tables. Update from v1: after second referee report, improved (larger) sample at z~

    Quantifying the UV-continuum slopes of galaxies to z ˜ 10 using deep Hubble+Spitzer/IRAC observations

    Get PDF
    Measurements of the UV-continuum slopes ÎČ provide valuable information on the physical properties of galaxies forming in the early universe, probing the dust reddening, age, metal content, and even the escape fraction. While constraints on these slopes generally become more challenging at higher redshifts as the UV-continuum shifts out of the Hubble Space Telescope bands (particularly at z > 7), such a characterization actually becomes abruptly easier for galaxies in the redshift window z = 9.5-10.5 due to the Spitzer/Infrared Array Camera 3.6 ÎŒm-band probing the rest-UV continuum and the long wavelength baseline between this Spitzer band and the Hubble Hf160w band. Higher S/N constraints on ÎČ are possible at z ˜ 10 than at z = 8. Here, we take advantage of this opportunity and five recently discovered bright z = 9.5-10.5 galaxies to present the first measurements of the mean ÎČ for a multi-object sample of galaxy candidates at z ˜ 10. We find the measured ÎČobs's of these candidates are -2.1 ± 0.3 ± 0.2 (random and systematic), only slightly bluer than the measured ÎČ's (ÎČobs ≈ -1.7) at 3.5 < z < 7.5 for galaxies of similar luminosities. Small increases in the stellar ages, metallicities, and dust content of the galaxy population from z ˜ 10 to z ˜ 7 could easily explain the apparent evolution in ÎČ

    The evolution of the specific star formation rate of massive galaxies to z ~ 1.8 in the E-CDFS

    Full text link
    We study the evolution of the star formation rate (SFR) of mid-infrared (IR) selected galaxies in the extended Chandra Deep Field South (E-CDFS). We use a combination of U-K GaBoDS and MUSYC data, deep IRAC observations from SIMPLE, and deep MIPS data from FIDEL. This unique multi-wavelength data set allows us to investigate the SFR history of massive galaxies out to redshift z ~ 1.8. We determine star formation rates using both the rest-frame ultraviolet luminosity from young, hot stars and the total IR luminosity of obscured star formation obtained from the MIPS 24 um flux. We find that at all redshifts the galaxies with higher masses have substantially lower specific star formation rates than lower mass galaxies. The average specific star formation rates increase with redshift, and the rate of incline is similar for all galaxies (roughly (1+z)^{n}, n = 5.0 +/- 0.4). It does not seem to be a strong function of galaxy mass. Using a subsample of galaxies with masses M_*> 10^11 M_sun, we measured the fraction of galaxies whose star formation is quenched. We consider a galaxy to be in quiescent mode when its specific star formation rate does not exceed 1/(3 x t_H), where t_H is the Hubble time. The fraction of quiescent galaxies defined as such decreases with redshift out to z ~ 1.8. We find that, at that redshift, 19 +/-9 % of the M_* > 10^11 M_sun sources would be considered quiescent according to our criterion.Comment: 7 pages, 6 figures, accepted for publication in Ap

    X-ray properties of K-selected galaxies at 0.5<z<2.0: Investigating trends with stellar mass, redshift and spectral type

    Full text link
    We examine how the total X-ray luminosity correlates with stellar mass, stellar population, and redshift for a K-band limited sample of ~3500 galaxies at 0.5<z<2.0 from the NEWFIRM Medium Band Survey in the COSMOS field. The galaxy sample is divided into 32 different galaxy types, based on similarities between the spectral energy distributions. For each galaxy type, we further divide the sample into bins of redshift and stellar mass, and perform an X-ray stacking analysis using the Chandra COSMOS (C-COSMOS) data. We find that full band X-ray luminosity is primarily increasing with stellar mass, and at similar mass and spectral type is higher at larger redshifts. When comparing at the same stellar mass, we find that the X-ray luminosity is slightly higher for younger galaxies (i.e., weaker 4000\AA breaks), but the scatter in this relation is large. We compare the observed X-ray luminosities to those expected from low and high mass X-ray binaries (XRBs). For blue galaxies, XRBs can almost fully account for the observed emission, while for older galaxies with larger 4000\AA breaks, active galactic nuclei (AGN) or hot gas dominate the measured X-ray flux. After correcting for XRBs, the X-ray luminosity is still slightly higher in younger galaxies, although this correlation is not significant. AGN appear to be a larger component of galaxy X-ray luminosity at earlier times, as the hardness ratio increases with redshift. Together with the slight increase in X-ray luminosity this may indicate more obscured AGNs or higher accretion rates at earlier times.Comment: 9 pages, 9 figures, ApJ accepte

    Dependence of galaxy clustering on UV-luminosity and stellar mass at z∌4−7z \sim 4 - 7

    Get PDF
    We investigate the dependence of galaxy clustering at z∌4−7z \sim 4 - 7 on UV-luminosity and stellar mass. Our sample consists of ∌\sim 10,000 Lyman-break galaxies (LBGs) in the XDF and CANDELS fields. As part of our analysis, the M⋆−MUVM_\star - M_{\rm UV} relation is estimated for the sample, which is found to have a nearly linear slope of dlog⁥10M⋆/dMUV∌0.44d\log_{10} M_\star / d M_{\rm UV} \sim 0.44. We subsequently measure the angular correlation function and bias in different stellar mass and luminosity bins. We focus on comparing the clustering dependence on these two properties. While UV-luminosity is only related to recent starbursts of a galaxy, stellar mass reflects the integrated build-up of the whole star formation history, which should make it more tightly correlated with halo mass. Hence, the clustering segregation with stellar mass is expected to be larger than with luminosity. However, our measurements suggest that the segregation with luminosity is larger with ≃90%\simeq 90\% confidence (neglecting contributions from systematic errors). We compare this unexpected result with predictions from the \textsc{Meraxes} semi-analytic galaxy formation model. Interestingly, the model reproduces the observed angular correlation functions, and also suggests stronger clustering segregation with luminosity. The comparison between our observations and the model provides evidence of multiple halo occupation in the small scale clustering.Comment: 10 pages, 6 figures, 2 tables, accepted for publication in MNRA

    Inferred Hα flux as a star formation rate indicator at z ∌ 4–5: implications for dust properties, burstiness, and the z = 4–8 star formation rate functions

    Get PDF
    We derive Hα fluxes for a large spectroscopic and photometric-redshift-selected sample of sources over GOODSNorth and South in the redshift range z = 3.8–5.0 with deep Hubble Space Telescope (HST), Spitzer/IRAC, and ground-based observations. The Hα flux is inferred based on the offset between the IRAC 3.6 ÎŒm flux and that predicted from the best-fit spectral energy distribution (SED). We demonstrate that the Hα flux correlates well with dust-corrected UV star formation rate (SFR) and therefore can serve as an independent SFR indicator. However, we also find a systematic offset in the SFR SFR H UV a +b ratios for z ∌ 4–5 galaxies relative to local relations (assuming the same dust corrections for nebular regions and stellar light). We show that we can resolve the modest tension in the inferred SFRs by assuming bluer intrinsic UV slopes (increasing the dust correction), a rising star formation history, or assuming a low-metallicity stellar population with a hard ionizing spectrum (increasing the LHa SFR ratio). Using Hα as an SFR indicator, we find a normalization of the star formation main sequence in good agreement with recent SED-based determinations and also derive the SFR functions at z ~ 4 8– . In addition, we assess for the first time the burstiness of star formation in z ~ 4 galaxies on <100 Myr timescales by comparing UV and Hα-based sSFRs; their one-to-one relationship argues against significantly bursty star formation histories

    Galaxy Stellar Mass Functions from z~10 to z~6 using the Deepest Spitzer/IRAC Data: No Significant Evolution in the Stellar-to-Halo Mass Ratio of Galaxies in the First Gyr of Cosmic Time

    Get PDF
    We present new stellar mass functions at z∌6z\sim6, z∌7z\sim7, z∌8z\sim8, z∌9z\sim9 and, for the first time, z∌10z\sim10, constructed from ∌800\sim800 Lyman-Break galaxies previously identified over the XDF/UDF, parallels and the five CANDELS fields. Our study is distinctive due to (1) the much deeper (∌200\sim200 hour) wide-area Spitzer/IRAC imaging at 3.6ÎŒ3.6\mum and 4.5ÎŒ4.5\mum from the GOODS Re-ionization Era wide Area Treasury from Spitzer (GREATS) program and (2) consideration of z∌6−10z\sim6-10 sources over a 3×3\times larger area than previous HST+Spitzer studies. The Spitzer/IRAC data enable ≄2σ\ge2\sigma rest-frame optical detections for an unprecedented 50%50\% of galaxies down to a stellar mass limit of ∌108M⊙\sim10^{8}\mathcal{M}_\odot across all redshifts. Schechter fits to our volume densities suggest a combined evolution in characteristic mass M∗\mathcal{M}^* and normalization factor ϕ∗\phi^* between z∌6z\sim6 and z∌8z\sim8. The stellar mass density (SMD) increases by ∌1000×\sim1000\times in the ∌500\sim500 Myr between z∌10z\sim10 and z∌6z\sim6, with indications of a steeper evolution between z∌10z\sim10 and z∌8z\sim8, similar to the previously-reported trend of the star-formation rate density. Strikingly, abundance matching to the Bolshoi-Planck simulation indicates halo mass densities evolving at approximately the same rate as the SMD between z∌10z\sim10 and z∌4z\sim4. Our results show that the stellar-to-halo mass ratios, a proxy for the star-formation efficiency, do not change significantly over the huge stellar mass build-up occurred from z∌10z\sim10 to z∌6z\sim6, indicating that the assembly of stellar mass closely mirrors the build-up in halo mass in the first ∌1\sim1 Gyr of cosmic history. JWST is poised to extend these results into the "first galaxy" epoch at z≳10z\gtrsim10.Comment: Submitted to ApJ, comments welcom
    • 

    corecore