106 research outputs found

    Ligand-Doped Copper Oxo-hydroxide Nanoparticles are Effective Antimicrobials.

    Get PDF
    Bacterial resistance to antimicrobial therapies is an increasing clinical problem. This is as true for topical applications as it is for systemic therapy. Topically, copper ions may be effective and cheap antimicrobials that act through multiple pathways thereby limiting opportunities to bacteria for resistance. However, the chemistry of copper does not lend itself to facile formulations that will readily release copper ions at biologically compatible pHs. Here we have developed nanoparticulate copper hydroxide adipate tartrate (CHAT) as a cheap, safe and readily synthesised material that should enable antimicrobial copper ion release in an infected wound environment. First, we synthesised CHAT and showed that this had disperse aquated particle sizes of 2-5 nm, and mean zeta potential of -40 mV. Next, when diluted into bacterial medium, CHAT demonstrated similar efficacy to copper chloride against Escherichia coli and Staphylococcus aureus, with dose-dependent activity occurring mostly around 12.5-50 mg/L of copper. Indeed, at these levels, CHAT very rapidly dissolved and, as confirmed by a bacterial copper biosensor, showed identical intracellular loading to copper ions derived from copper chloride. However, when formulated at 250 mg/L in a topically-applied matrix, namely hydroxyethyl cellulose, the benefit of CHAT over copper chloride was apparent. The former yielded rapid sustained release of copper within the bactericidal range but the copper chloride, which formed insoluble precipitates at such concentration and pH, achieved a maximum release of 10 ± 7 mg/L copper by 24 hours. We provide a practical formulation for topical copper - based antimicrobial therapy. Further studies, especially in vivo, are merited

    Antiviral efficacy of nanomaterial-treated textiles in real-life like exposure conditions

    Get PDF
    We thank the following people and institutions for their contribution to our investigation. Toomas Varjund from TAD Logistics OÜ for providing the textiles. Ülis Sõukand from Estonian Environmental Research Center for his help with methods of chemical analysis. Estonian Research Council projects COVSG2, PRG629, PRG1496, PRG1154 and European Commission project STOP (Grant agreement ID: 101057961) for their financial support. The Center of nanomaterials technologies and research (NAMUR+) for core facility funded by project TT13 which was used conducting the research.Due to the growing interest towards reducing the number of potentially infectious agents on critical high-touch surfaces, the popularity of antimicrobially and antivirally active surfaces, including textiles, has increased. The goal of this study was to create antiviral textiles by spray-depositing three different nanomaterials, two types of CeO2 nanoparticles and quaternary ammonium surfactant CTAB loaded SiO2 nanocontainers, onto the surface of a knitted polyester textile and assess their antiviral activity against two coronaviruses, porcine transmissible gastroenteritis virus (TGEV) and severe acute respiratory syndrome virus (SARS CoV-2). Antiviral testing was carried out in small droplets in semi-dry conditions and in the presence of organic soiling, to mimic aerosol deposition of viruses onto the textiles. In such conditions, SARS CoV-2 stayed infectious at least for 24 h and TGEV infected cells even after 72h of semi-dry deposition suggesting that textiles exhibiting sufficient antiviral activity before or at 24 h, can be considered promising. The antiviral efficacy of nanomaterial-deposited textiles was compared with the activity of the same nanomaterials in colloidal form and with positive control textiles loaded with copper nitrate and CTAB. Our results indicated that after deposition onto the textile, CeO2 nanoparticles lost most of their antiviral activity, but antiviral efficacy of CTAB-loaded SiO2 nanocontainers was retained also after deposition. Copper nitrate deposited textile that was used as a positive control, showed relatively high antiviral activity as expected. However, as copper was effectively washed away from the textile already during 1 h, the use of copper for creating antiviral textiles would be impractical. In summary, our results indicated that antiviral activity of textiles cannot be predicted from antiviral efficacy of the deposited compounds in colloid and attention should be paid on prolonged efficacy of antivirally coated textiles.--//-- Alexandra Nefedova, Kai Rausalu, Eva Zusinaite, Vambola Kisand, Mati Kook, Krisjanis Smits, Alexander Vanetsev, Angela Ivask, Antiviral efficacy of nanomaterial-treated textiles in real-life like exposure conditions, Heliyon, Volume 9, Issue 9, 2023, e20067, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2023.e20067. Published under the CC BY-NC-ND licence.Estonian Research Council projects COVSG2, PRG629, PRG1496, PRG1154; European Commission project STOP (Grant agreement ID: 101057961); the Institute of Solid State Physics, University of Latvia has received funding from EU CAMART2 project (European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017 TeamingPhase2 under grant agreement No. 739508

    Effects of environmentally relevant concentrations of microplastics on amphipods

    Get PDF
    Lack of microplastics (MP) toxicity studies involving environmentally relevant concentrations and exposure times is concerning. Here we analyzed the potential adverse effects of low density polyethylene (LDPE) MP at environmentally relevant concentration in sub-chronic exposure to two amphipods Gmelinoides fasciatus and Gammarus lacustris, species that naturally compete with each other for their habitats. 14-day exposure to 2 μg/L (8 particles/L corresponding to low exposure) and 2 mg/L (~8400 particles/L, corresponding to high exposure) of 53–100 μm LDPE MP were used to assess ingestion and egestion of MP, evaluate its effects on amphipod mortality, swimming ability and oxidative stress level. Both amphipod species were effectively ingesting and egesting LDPE MP. On the average, 0.8 and 2.5 MP particles were identified in the intestines of each amphipod exposed to 2 μg/L and 2 mg/L LDPE MP, respectively. Therefore, intestinal MP after 14-day exposure did not fully reflect the differences in LDPE MP exposure concentrations. Increased mortality of both amphipods was observed at 2 mg/L LDPE MP and in case of G. lacustris also at 2 μg/L exposure. The effect of LDPE on swimming activity was observed only in case of G. fasciatus. Oxidative stress marker enzymes SOD, GPx and reduced glutathione GSH varied according to amphipod species and LDPE MP concentration. In general G. lacustris was more sensitive towards LDPE MP induced oxidative stress. Overall, the results suggested that in MP polluted environments, G. lacustris may lose its already naturally low competitiveness and become overcompeted by other more resistant species. The fact that in the sub-chronic foodborne exposure to environmentally relevant and higher LDPE MP concentrations all the observed toxicological endpoints were affected refers to the potential of MP to affect and disrupt aquatic communities in the longer perspective.This research was funded by the Estonian Research Council (Estonia) grants PUT1512 (M. Heinlaan and M. Raudna-Kristoffersen) and PRG1427 (M. Heinlaan). This work was also supported by the research grants PSG653 (R. Kreitsberg and R. Meitern) and PRG1496 (A. Ivask) of the Estonian Research Council. The project was carried out in collaboration with Vortsj ˜ arv ¨ Centre for Limnology of the Estonian University of Life Sciences (EMU). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 951963

    Antiviral efficacy of cerium oxide nanoparticles

    Get PDF
    The authors gratefully acknowledge the financial support by the Estonian Research Council Grants (COVSG2, PRG629, PRG1496), Estonian Centre of Excellence in Research project “Advanced materials and high-technology devices for sustainable energetics, sensorics and nanoelectronics” TK141 (2014-2020.4.01.15-0011) and University of Tartu Development Fund (PLTFYARENG53). The research was partly conducted using the NAMUR+ core facility funded by projects “Center of nanomaterials technologies and research” (2014-2020.4.01.16-0123) and TT13.Nanomaterials are prospective candidates for the elimination of viruses due to their multimodal mechanisms of action. Here, we tested the antiviral potential of a largely unexplored nanoparticle of cerium dioxide (CeO2). Two nano-CeO2 with opposing surface charge, (+) and (−), were assessed for their capability to decrease the plaque forming units (PFU) of four enveloped and two non-enveloped viruses during 1-h exposure. Statistically significant antiviral activity towards enveloped coronavirus SARS-CoV-2 and influenza virus was registered already at 20 mg Ce/l. For other two enveloped viruses, transmissible gastroenteritis virus and bacteriophage φ6, antiviral activity was evidenced at 200 mg Ce/l. As expected, the sensitivity of non-enveloped viruses towards nano-CeO2 was significantly lower. EMCV picornavirus showed no decrease in PFU until the highest tested concentration, 2000 mg Ce/l and MS2 bacteriophage showed slight non-monotonic response to high concentrations of nano-CeO2(−). Parallel testing of antiviral activity of Ce3+ ions and SiO2 nanoparticles allows to conclude that nano-CeO2 activity was neither due to released Ce-ions nor nonspecific effects of nanoparticulates. Moreover, we evidenced higher antiviral efficacy of nano-CeO2 compared with Ag nanoparticles. This result along with low antibacterial activity and non-existent cytotoxicity of nano-CeO2 allow us to propose CeO2 nanoparticles for specific antiviral applications. © 2022, The Author(s). --//-- This is an open access article Nefedova A, Rausalu K, Zusinaite E, Vanetsev A, Rosenberg M, Koppel K, Lilla S, Visnapuu M, Smits K, Kisand V, Tätte T, Ivask A., "Antiviral efficacy of cerium oxide nanoparticles", Scientific Reports (2022); 12(1):18746, doi: 10.1038/s41598-022-23465-6 published under the CC BY 4.0 licence.Estonian Research Council Grants (COVSG2, PRG629, PRG1496); Estonian Centre of Excellence in Research TK141 (2014-2020.4.01.15-0011); University of Tartu Development Fund (PLTFYARENG53); Institute of Solid-State Physics, University of Latvia has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-Teaming Phase 2 under grant agreement No. 739508, project CAMART2

    Potential ecotoxicological effects of antimicrobial surface coatings: a literature survey backed up by analysis of market reports

    Get PDF
    This review was initiated by the COST action CA15114 AMICI “Anti-Microbial Coating Innovations to prevent infectious diseases,” where one important aspect is to analyze ecotoxicological impacts of antimicrobial coatings (AMCs) to ensure their sustainable use. Scopus database was used to collect scientific literature on the types and uses of AMCs, while market reports were used to collect data on production volumes. Special attention was paid on data obtained for the release of the most prevalent ingredients of AMCs into the aqueous phase that was used as the proxy for their possible ecotoxicological effects. Based on the critical analysis of 2,720 papers, it can be concluded that silver-based AMCs are by far the most studied and used coatings followed by those based on titanium, copper, zinc, chitosan and quaternary ammonium compounds. The literature analysis pointed to biomedicine, followed by marine industry, construction industry (paints), food industry and textiles as the main fields of application of AMCs. The published data on ecotoxicological effects of AMCs was scarce, and also only a small number of the papers provided information on release of antimicrobial ingredients from AMCs. The available release data allowed to conclude that silver, copper and zinc are often released in substantial amounts (up to 100%) from the coatings to the aqueous environment. Chitosan and titanium were mostly not used as active released ingredients in AMCs, but rather as carriers for other release-based antimicrobial ingredients (e.g., conventional antibiotics). While minimizing the prevalence of healthcare-associated infections appeared to be the most prosperous field of AMCs application, the release of environmentally hazardous ingredients of AMCs into hospital wastewaters and thus, also the environmental risks associated with AMCs, comprise currently only a fraction of the release and risks of traditional disinfectants. However, being proactive, while the use of antimicrobial/antifouling coatings could currently pose ecotoxicological effects mainly in marine applications, the broad use of AMCs in other applications like medicine, food packaging and textiles should be postponed until reaching evidences on the (i) profound efficiency of these materials in controlling the spread of pathogenic microbes and (ii) safety of AMCs for the human and ecosystems

    Dissolution of Silver Nanowires and Nanospheres Dictates Their Toxicity to Escherichia coli

    Get PDF
    Silver nanoparticles are extensively used in antibacterial applications. However, the mechanisms of their antibacterial action are not yet fully explored. We studied the solubility-driven toxicity of 100 × 6100 nm (mean primary diameter × length) silver nanowires (NWs) to recombinant bioluminescent Escherichia coli as a target representative of enteric pathogens. The bacteria were exposed to silver nanostructures in water to exclude the speciation-driven alterations. Spherical silver nanoparticles (83 nm mean primary size) were used as a control for the effect of NPs shape. Toxicity of both Ag NWs and spheres to E. coli was observed at similar nominal concentrations: the 4h EC50 values, calculated on the basis of inhibition of bacterial bioluminescence, were 0.42 ± 0.06 and 0.68 ± 0.01 mg Ag/L, respectively. Dissolution and bioavailability of Ag from NWs and nanospheres, analyzed with AAS or Ag-sensor bacteria, respectively, suggested that the toxic effects were caused by solubilized Ag + ions. Moreover, the antibacterial activities of Ag NWs suspension and its ultracentrifuged particle-free supernatant were equal. The latter indicated that the toxic effects of ∼80-100 nm Ag nanostructures to Escherichia coli were solely dependent on their dissolution and no shape-induced/related effects were observed. Yet, additional nanospecific effects could come into play in case of smaller nanosilver particles

    LuxCDABE—Transformed Constitutively Bioluminescent Escherichia coli for Toxicity Screening: Comparison with Naturally Luminous Vibrio fischeri

    Get PDF
    We show that in vitro toxicity assay based on inhibition of the bioluminescence of recombinant Escherichia coli encoding thermostable luciferase from Photorhabdus luminescens is a versatile alternative to Vibrio fischeri Microtox™ test. Performance of two luxCDABE-transformed E. coli MC1061 constructs (pDNlux) and (pSLlux) otherwise identical, but having 100-fold different background luminescence was compared with the performance of V. fischeri. The microplate luminometer and a kinetic Flash-Assay test format was used that differently from Microtox test is also applicable for high throughput analysis. Toxic effects (30-s till 30-min EC50) of four heavy metals (Zn, Cd, Hg, Cu) and three organic chemicals (aniline, 3,5-dichloroaniline and 3,5-dichlorophenol) were studied. Both E. coli strains had comparable sensitivity and the respective 30-min EC50 values highly correlated (log-log R2 = 0.99; p < 0.01) showing that the sensitivity of the recombinant bacteria towards chemicals analyzed did not depend on the bioluminescence level of the recombinant cells. The most toxic chemical for all used bacterial strains (E. coli, V. fischeri) was mercury whereas the lowest EC50 values for Hg (0.04–0.05 mg/L) and highest EC50 values for aniline (1,300–1,700 mg/L) were observed for E. coli strains. Despite of that, toxicity results obtained with both E. coli strains (pSLlux and pDNlux) significantly correlated with V. fischeri results (log-log R2 = 0.70/0.75; p < 0.05/0.01). The use of amino acids (0.25%) and glucose (0.05%)-supplemented M9 medium instead of leucine-supplemented saline significantly (p < 0.05) reduced the apparent toxicity of heavy metals to both E. coli strains up to three orders of magnitude, but had little or no complexing effect on organic compounds. Thus, P. luminescens luxCDABE-transformed E. coli strains can be successfully used for the acute toxicity screening of various types of organic chemicals and heavy metals and can replace V. fischeri in certain cases where the thermostability of luciferase >30 °C is crucial. The kinetic Flash Assay test format of the bioluminescence inhibition assay facilitates high throughput analysis. The assay medium, especially in case of testing heavy metals should be a compromise: optimal for the viability/luminescence of the recombinant test strain and of minimum complexing potential
    corecore