697 research outputs found

    Coding limits on the number of transcription factors

    Get PDF
    Transcription factor proteins bind specific DNA sequences to control the expression of genes. They contain DNA binding domains which belong to several super-families, each with a specific mechanism of DNA binding. The total number of transcription factors encoded in a genome increases with the number of genes in the genome. Here, we examined the number of transcription factors from each super-family in diverse organisms. We find that the number of transcription factors from most super-families appears to be bounded. For example, the number of winged helix factors does not generally exceed 300, even in very large genomes. The magnitude of the maximal number of transcription factors from each super-family seems to correlate with the number of DNA bases effectively recognized by the binding mechanism of that super-family. Coding theory predicts that such upper bounds on the number of transcription factors should exist, in order to minimize cross-binding errors between transcription factors. This theory further predicts that factors with similar binding sequences should tend to have similar biological effect, so that errors based on mis-recognition are minimal. We present evidence that transcription factors with similar binding sequences tend to regulate genes with similar biological functions, supporting this prediction. The present study suggests limits on the transcription factor repertoire of cells, and suggests coding constraints that might apply more generally to the mapping between binding sites and biological function.Comment: http://www.weizmann.ac.il/complex/tlusty/papers/BMCGenomics2006.pdf https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1590034/ http://www.biomedcentral.com/1471-2164/7/23

    Quantitative effect of target translation on small RNA efficacy reveals a novel mode of interaction

    Get PDF
    Small regulatory RNAs (sRNAs) in bacteria regulate many important cellular activities under normal conditions and in response to stress. Many sRNAs bind to the mRNA targets at or near the 5′ untranslated region (UTR) resulting in translation inhibition and accelerated degradation. Often the sRNA-binding site is adjacent to or overlapping with the ribosomal binding site (RBS), suggesting a possible interplay between sRNA and ribosome binding. Here we combine quantitative experiments with mathematical modeling to reveal novel features of the interaction between small RNAs and the translation machinery at the 5′UTR of a target mRNA. By measuring the response of a library of reporter targets with varied RBSs, we find that increasing translation rate can lead to increased repression. Quantitative analysis of these data suggests a recruitment model, where bound ribosomes facilitate binding of the sRNA. We experimentally verified predictions of this model for the cell-to-cell variability of target expression. Our findings offer a framework for understanding sRNA silencing in the context of bacterial physiology

    Coarse-Graining and Self-Dissimilarity of Complex Networks

    Full text link
    Can complex engineered and biological networks be coarse-grained into smaller and more understandable versions in which each node represents an entire pattern in the original network? To address this, we define coarse-graining units (CGU) as connectivity patterns which can serve as the nodes of a coarse-grained network, and present algorithms to detect them. We use this approach to systematically reverse-engineer electronic circuits, forming understandable high-level maps from incomprehensible transistor wiring: first, a coarse-grained version in which each node is a gate made of several transistors is established. Then, the coarse-grained network is itself coarse-grained, resulting in a high-level blueprint in which each node is a circuit-module made of multiple gates. We apply our approach also to a mammalian protein-signaling network, to find a simplified coarse-grained network with three main signaling channels that correspond to cross-interacting MAP-kinase cascades. We find that both biological and electronic networks are 'self-dissimilar', with different network motifs found at each level. The present approach can be used to simplify a wide variety of directed and nondirected, natural and designed networks.Comment: 11 pages, 11 figure

    Statistical significance of rich-club phenomena in complex networks

    Full text link
    We propose that the rich-club phenomena in complex networks should be defined in the spirit of bootstrapping, in which a null model is adopted to assess the statistical significance of the rich-club detected. Our method can be served as a definition of rich-club phenomenon and is applied to analyzing three real networks and three model networks. The results improve significantly compared with previously reported results. We report a dilemma with an exceptional example, showing that there does not exist an omnipotent definition for the rich-club phenomenon.Comment: 3 Revtex pages + 5 figure

    Subgraphs and network motifs in geometric networks

    Full text link
    Many real-world networks describe systems in which interactions decay with the distance between nodes. Examples include systems constrained in real space such as transportation and communication networks, as well as systems constrained in abstract spaces such as multivariate biological or economic datasets and models of social networks. These networks often display network motifs: subgraphs that recur in the network much more often than in randomized networks. To understand the origin of the network motifs in these networks, it is important to study the subgraphs and network motifs that arise solely from geometric constraints. To address this, we analyze geometric network models, in which nodes are arranged on a lattice and edges are formed with a probability that decays with the distance between nodes. We present analytical solutions for the numbers of all 3 and 4-node subgraphs, in both directed and non-directed geometric networks. We also analyze geometric networks with arbitrary degree sequences, and models with a field that biases for directed edges in one direction. Scaling rules for scaling of subgraph numbers with system size, lattice dimension and interaction range are given. Several invariant measures are found, such as the ratio of feedback and feed-forward loops, which do not depend on system size, dimension or connectivity function. We find that network motifs in many real-world networks, including social networks and neuronal networks, are not captured solely by these geometric models. This is in line with recent evidence that biological network motifs were selected as basic circuit elements with defined information-processing functions.Comment: 9 pages, 6 figure

    Scaling laws in bacterial genomes: A side-effect of selection of mutational robustness?

    Get PDF
    In the past few years, numerous research projects have focused on identifying and understanding scaling properties in the gene content of prokaryote genomes and the intricacy of their regulation networks. Yet, and despite the increasing amount of data available, the origins of these scalings remain an open question. The RAevol model, a digital genetics model, provides us with an insight into the mechanisms involved in an evolutionary process. The results we present here show that (i) our model reproduces qualitatively these scaling laws and that (ii) these laws are not due to differences in lifestyles but to differences in the spontaneous rates of mutations and rearrangements. We argue that this is due to an indirect selective pressure for robustness that constrains the genome size

    Potts Model On Random Trees

    Full text link
    We study the Potts model on locally tree-like random graphs of arbitrary degree distribution. Using a population dynamics algorithm we numerically solve the problem exactly. We confirm our results with simulations. Comparisons with a previous approach are made, showing where its assumption of uniform local fields breaks down for networks with nodes of low degree.Comment: 10 pages, 3 figure

    Structure of n-clique networks embedded in a complex network

    Get PDF
    We propose the n-clique network as a powerful tool for understanding global structures of combined highly-interconnected subgraphs, and provide theoretical predictions for statistical properties of the n-clique networks embedded in a complex network using the degree distribution and the clustering spectrum. Furthermore, using our theoretical predictions, we find that the statistical properties are invariant between 3-clique networks and original networks for several observable real-world networks with the scale-free connectivity and the hierarchical modularity. The result implies that structural properties are identical between the 3-clique networks and the original networks.Comment: 12 pages, 5 figure
    corecore