10 research outputs found
NAME ORG. SIGNATURE DATE
Small changes in the pointing direction of NGST will be required as part of target acquisition and dithering. Some portion of these changes may be accomplished by moving the entire observatory, other portions might be accomplished by moving a mirror. The purpose of this document is to outline the expected scientific drivers for different kinds of motions, estimate their scale and frequency, and assess their importance to the overall science goals of the observatory. Such information is an important input to deciding how efficient and accurate to make the small-angle maneuvers, and in deciding how they should be accomplished.
Temporal networks of face-to-face human interactions
The ever increasing adoption of mobile technologies and ubiquitous services
allows to sense human behavior at unprecedented levels of details and scale.
Wearable sensors are opening up a new window on human mobility and proximity at
the finest resolution of face-to-face proximity. As a consequence, empirical
data describing social and behavioral networks are acquiring a longitudinal
dimension that brings forth new challenges for analysis and modeling. Here we
review recent work on the representation and analysis of temporal networks of
face-to-face human proximity, based on large-scale datasets collected in the
context of the SocioPatterns collaboration. We show that the raw behavioral
data can be studied at various levels of coarse-graining, which turn out to be
complementary to one another, with each level exposing different features of
the underlying system. We briefly review a generative model of temporal contact
networks that reproduces some statistical observables. Then, we shift our focus
from surface statistical features to dynamical processes on empirical temporal
networks. We discuss how simple dynamical processes can be used as probes to
expose important features of the interaction patterns, such as burstiness and
causal constraints. We show that simulating dynamical processes on empirical
temporal networks can unveil differences between datasets that would otherwise
look statistically similar. Moreover, we argue that, due to the temporal
heterogeneity of human dynamics, in order to investigate the temporal
properties of spreading processes it may be necessary to abandon the notion of
wall-clock time in favour of an intrinsic notion of time for each individual
node, defined in terms of its activity level. We conclude highlighting several
open research questions raised by the nature of the data at hand.Comment: Chapter of the book "Temporal Networks", Springer, 2013. Series:
Understanding Complex Systems. Holme, Petter; Saram\"aki, Jari (Eds.
Aerospace Science and Technology Vol. 12 , No. 1 . Special Issue on Aircraft Noise Reduction
Selection of 11 Journal articles on the subject of Aircraft Noise Reduction. See website for more informatio
