16 research outputs found

    Seasonally stable temperature gradients through supraglacial debris in the Everest region of Nepal, Central Himalaya

    Get PDF
    Rock debris covers about 30% of glacier ablation areas in the Central Himalaya and modifies the impact of atmospheric conditions on mass balance. The thermal properties of supraglacial debris are diurnally variable but remain poorly constrained for monsoon-influenced glaciers over the timescale of the ablation season. We measured vertical debris profile temperatures at 12 sites on four glaciers in the Everest region with debris thickness ranging from 0.08–2.8 m. Typically, the length of the ice ablation season beneath supraglacial debris was 160 days (15 May to 22 October)—a month longer than the monsoon season. Debris temperature gradients were approximately linear (r2 > 0.83), measured as –40°C m–1 where debris was up to 0.1 m thick, –20°C m–1 for debris 0.1–0.5 m thick, and –4°C m–1 for debris greater than 0.5 m thick. Our results demonstrate that the influence of supraglacial debris on the temperature of the underlying ice surface, and therefore melt, is stable at a seasonal timescale and can be estimated from near-surface temperature. These results have the potential to greatly improve the representation of ablation in calculations of debris-covered glacier mass balance and projections of their response to climate change.Peer reviewe

    Hydrology of debris-covered glaciers in High Mountain Asia

    Get PDF
    The hydrological characteristics of debris-covered glaciers are known to be fundamentally different from those of clean-ice glaciers, even within the same climatological, geological, and geomorphological setting. Understanding how these characteristics influence the timing and magnitude of meltwater discharge is particularly important for regions where downstream communities rely on this resource for sanitation, irrigation, and hydropower, such as High Mountain Asia. The hydrology of debris-covered glaciers is complex: rugged surface topographies typically route meltwater through compound supraglacial-englacial systems involving both channels and ponds, as well as pathways that remain unknown. Low-gradient tongues that extend several kilometres retard water conveyance and promote englacial storage. Englacial conduits are frequently abandoned and reactivated as water supply changes, new lines of permeability are exploited, and drainage is captured due to high rates of surface and subsurface change. Seasonal influences, such as the monsoon, are superimposed on these distinctive characteristics, reorganising surface and subsurface drainage rapidly from one season to the next. Recent advances in understanding have mostly come from studies aimed at quantifying and describing supraglacial processes; little is known about the subsurface hydrology, particularly the nature (or even existence) of subglacial drainage. In this review, we consider in turn the supraglacial, englacial, subglacial, and proglacial hydrological domains of debris-covered glaciers in High Mountain Asia. We summarise different lines of evidence to establish the current state of knowledge and, in doing so, identify major knowledge gaps. Finally, we use this information to suggest six themes for future hydrological research at High Mountain Asian debris-covered glaciers in order to make timely long-term predictions of changes in the water they supply

    Time‐lapse photogrammetry reveals hydrological controls of fine‐scale High‐Arctic glacier surface roughness evolution

    Get PDF
    In a warming Arctic, as glacier snowlines rise, short- to medium-term increases in seasonal bare-ice extent are forecast for the next few decades. These changes will enhance the importance of turbulent energy fluxes for surface ablation and glacier mass balance. Turbulent energy exchanges at the ice surface are conditioned by its topography, or roughness, which has been hypothesized to be controlled by supraglacial hydrology at the glacier scale. However, current understanding of the dynamics in surface topography, and the role of drainage development, remains incomplete, particularly for the transition between seasonal snow cover and well-developed, weathered bare-ice. Using time-lapse photogrammetry, we report a daily timeseries of fine (millimetre)-scale supraglacial topography at a 2 m2 plot on the Lower Foxfonna glacier, Svalbard, over two 9-day periods in 2011. We show traditional kernel-based morphometric descriptions of roughness were ineffective in describing temporal change, but indicated fine-scale albedo feedbacks at depths of ~60 mm contributed to conditioning surface topography. We found profile-based and two-dimensional estimates of roughness revealed temporal change, and the aerodynamic roughness parameter, z0, showed a 22–32% decrease from ~1 mm following the exposure of bare-ice, and a subsequent 72–77% increase. Using geostatistical techniques, we identified ‘hole effect’ properties in the surface elevation semivariograms, and demonstrated that hydrological drivers control the plot-scale topography: degradation of superimposed ice reduces roughness while the inception of braided rills initiates a subsequent development and amplification of topography. Our study presents an analytical framework for future studies that interrogate the coupling between ice surface roughness and hydro-meteorological variables and seek to improve parameterizations of topographically evolving bare-ice areas

    Seasonally stable temperature gradients through supraglacial debris in the Everest region of Nepal, Central Himalaya

    Get PDF
    Rock debris covers about 30% of glacier ablation areas in the Central Himalaya and modifies the impact of atmospheric conditions on mass balance. The thermal properties of supraglacial debris are diurnally variable but remain poorly constrained for monsoon-influenced glaciers over the timescale of the ablation season. We measured vertical debris profile temperatures at 12 sites on four glaciers in the Everest region with debris thickness ranging from 0.08–2.8 m. Typically, the length of the ice ablation season beneath supraglacial debris was 160 days (15 May to 22 October)—a month longer than the monsoon season. Debris temperature gradients were approximately linear (r2 > 0.83), measured as –40°C m–1 where debris was up to 0.1 m thick, –20°C m–1 for debris 0.1–0.5 m thick, and –4°C m–1 for debris greater than 0.5 m thick. Our results demonstrate that the influence of supraglacial debris on the temperature of the underlying ice surface, and therefore melt, is stable at a seasonal timescale and can be estimated from near-surface temperature. These results have the potential to greatly improve the representation of ablation in calculations of debris-covered glacier mass balance and projections of their response to climate change.Peer reviewe

    A non-invasive investigation of polythermal glacial hydrology: Stagnation Glacier, Bylot Island, Nunavut, Canada

    No full text
    Bibliography: p. 146-180In comparison to temperate examples, there are relatively few studies to date focused on the hydrology of polythermal glaciers. In particular, seasonal evolution of hydrological architecture at high latitude glaciers is poorly understood, with exception of a number of recent hydrochemical and dye tracing analyses. However, contemporary research has shown ground penetrating radar (GPR) to be effective tool for imaging englacial structures. To investigate seasonal evolution of englacial, subglacial and ice-marginal hydrology at the informally named Stagnation Glacier, Bylot Island, Nunavut, repeated sub-surface surveys using GPR were conducted, complemented by dye tracing and analysis of proglacial in­stream sediment transport. Results from all three methods strongly indicated progressive, yet subtle development of a polythermal glacier's hydrology through the summer. This work documents structural thermo-hydrologic progression at a polythermal glacier, and the integration of results, and interpretations presented here have potentially significant implications for the conceptual understanding of Arctic glacial hydrology, including water pressure distribution

    Ice-marginal sediment delivery to the surface of a High-Arctic glacier: Austre BrĂžggerbreen, Svalbard

    No full text
    The definitive version is found at: http://onlinelibrary.wiley.com/ Copyright Wiley-BlackwellEnhanced delivery of water-saturated, ice-marginal sediments to the glacier surface is a response to glacier thinning that has the potential to increase both levels of sediment transfer through the glacier hydrological system and total basin sediment yields. Preliminary observations made during summer 2007 at Austre Br circle divide ggerbreen, Svalbard, confirm that ice-marginal debris flows in the upper reaches of the glacier are actively delivering sediments to the glacier surface, which may then be flushed into the glacier's hydrological system. During a four-day observation period, several stochastic pulses in water turbidity were observed at a single portal where solely supra- and englacial drainage emerge at the glacier margin. The erratic suspended sediment fluxes were hypothesized to originate from ice-marginal sources. Quantitative analysis of continuous turbidity and discharge data confirm that discharge is not driving these turbidity pulses and, combined with observational data, that the most likely origin is the delivery of water-saturated sediments to the glacier surface from ice-marginal, debris flows with subsequent transfer to the portal via the glacial drainage system. These observations illustrate the potential importance of the paraglacial component to the overall sediment cascade of deglaciating basins and highlight the need for careful interpretation of turbidity records, where stochastic pulses in turbidity may be attributed to sources and processes other than ice-marginal sediment inputs.Peer reviewe

    Seasonally stable temperature gradients through supraglacial debris in the Everest region of Nepal, Central Himalaya

    Get PDF
    Rock debris covers about 30% of glacier ablation areas in the Central Himalaya and modifies the impact of atmospheric conditions on mass balance. The thermal properties of supraglacial debris are diurnally variable but remain poorly constrained for monsoon-influenced glaciers over the timescale of the ablation season. We measured vertical debris profile temperatures at 12 sites on four glaciers in the Everest region with debris thickness ranging from 0.08–2.8 m. Typically, the length of the ice ablation season beneath supraglacial debris was 160 days (15 May to 22 October)—a month longer than the monsoon season. Debris temperature gradients were approximately linear (r2 > 0.83), measured as –40°C m–1 where debris was up to 0.1 m thick, –20°C m–1 for debris 0.1–0.5 m thick, and –4°C m–1 for debris greater than 0.5 m thick. Our results demonstrate that the influence of supraglacial debris on the temperature of the underlying ice surface, and therefore melt, is stable at a seasonal timescale and can be estimated from near-surface temperature. These results have the potential to greatly improve the representation of ablation in calculations of debris-covered glacier mass balance and projections of their response to climate change.Peer reviewe
    corecore