
Aberystwyth University

Hydrology of debris-covered glaciers in High Mountain Asia
Miles, Katie E.; Hubbard, Bryn; Irvine-fynn, Tristram D.l.; Miles, Evan S.; Quincey, Duncan J.; Rowan, Ann V.

Published in:
Earth-Science Reviews

DOI:
10.1016/j.earscirev.2020.103212

Publication date:
2020

Citation for published version (APA):
Miles, K. E., Hubbard, B., Irvine-fynn, T. D. L., Miles, E. S., Quincey, D. J., & Rowan, A. V. (2020). Hydrology of
debris-covered glaciers in High Mountain Asia. Earth-Science Reviews, 207, [103212].
https://doi.org/10.1016/j.earscirev.2020.103212

Document License
CC BY-NC-ND

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 30. Aug. 2021

https://doi.org/10.1016/j.earscirev.2020.103212
https://pure.aber.ac.uk/portal/en/persons/katharine-miles(b1fae117-650d-465e-823f-a8810016faa8).html
https://pure.aber.ac.uk/portal/en/persons/bryn-hubbard(5ed71617-40db-4446-9021-7b7750010b57).html
https://pure.aber.ac.uk/portal/en/persons/tristram-irvinefynn(fdbce4c7-db6b-4a07-b89c-cea0cf964545).html
https://pure.aber.ac.uk/portal/en/publications/hydrology-of-debriscovered-glaciers-in-high-mountain-asia(da1d96a9-cb0e-4aac-aba3-c19c02170d4a).html
https://pure.aber.ac.uk/portal/en/publications/hydrology-of-debriscovered-glaciers-in-high-mountain-asia(da1d96a9-cb0e-4aac-aba3-c19c02170d4a).html
https://doi.org/10.1016/j.earscirev.2020.103212


Hydrology of debris-covered glaciers in High Mountain Asia  

Author's post-print/accepted version
(CC-BY-NC-ND)

  DOI of published version (Earth-Science Reviews): 

https://doi.org/10.1016/j.earscirev.2020.103212



1 
 

Hydrology of debris-covered glaciers in High Mountain Asia 1 

 2 

Katie E. Miles1*, Bryn Hubbard1, Tristram D. L. Irvine-Fynn1, Evan S. Miles2, Duncan J. Quincey3 3 
and Ann V. Rowan4 4 

1. Centre for Glaciology, Department of Geography and Earth Sciences, Aberystwyth University, 5 
Aberystwyth, UK 6 

2. Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland 7 

3. School of Geography, University of Leeds, Leeds, UK 8 

4. Department of Geography, University of Sheffield, Sheffield, UK 9 

* Correspondence to: kam64@aber.ac.uk 10 

 11 

Key words 12 

Glaciers; debris-covered glaciers; glacier hydrology; High Mountain Asia 13 

Abstract 14 

The hydrological characteristics of debris-covered glaciers are known to be fundamentally 15 

different from those of clean-ice glaciers, even within the same climatological, geological, and 16 

geomorphological setting. Understanding how these characteristics influence the timing and 17 

magnitude of meltwater discharge is particularly important for regions where downstream 18 

communities rely on this resource for sanitation, irrigation, and hydropower, as in High Mountain 19 

Asia. The hydrology of debris-covered glaciers is complex: rugged surface topographies typically 20 

route meltwater through compound supraglacial-englacial systems involving both channels and 21 

ponds, as well as pathways that remain unknown. Low-gradient tongues that extend several 22 

kilometres retard water conveyance and promote englacial storage. Englacial conduits are 23 

frequently abandoned and reactivated as water supply changes, new lines of permeability are 24 

exploited, and drainage is captured due to high rates of surface and subsurface change. Seasonal 25 

influences, such as the monsoon, are superimposed on these distinctive characteristics, 26 

reorganising surface and subsurface drainage rapidly from one season to the next. Recent 27 

advances in understanding have mostly come from studies aimed at quantifying and describing 28 

supraglacial processes; little is known about the subsurface hydrology, particularly the nature (or 29 

even existence) of subglacial drainage. In this review, we consider in turn the supraglacial, 30 

englacial, subglacial, and proglacial hydrological domains of debris-covered glaciers in High 31 

Mountain Asia. We summarise different lines of evidence to establish the current state of 32 

knowledge and, in doing so, identify major knowledge gaps. Finally, we use this information to 33 

suggest six themes for future hydrological research at High Mountain Asian debris-covered glaciers 34 

in order to make timely long-term predictions of changes in the water they supply. 35 
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1. Introduction 36 

Debris-covered glaciers have gained increased research attention over recent years, partly in 37 

recognition of their role as water sources for large parts of the world’s population (Immerzeel et 38 

al., 2020; Scherler et al., 2011) and partly because they host a range of distinctive features, driven 39 

by processes that are largely absent from their clean-ice counterparts. Definitions of what 40 

constitutes a ‘debris-covered glacier’ vary widely (e.g. Anderson, 2000; Kirkbride, 2011), but here 41 

we define them to be glaciers with a largely continuous layer of supraglacial debris over most of 42 

the ablation area, typically increasing in thickness towards the terminus  (Figure 1). Debris can be 43 

supplied to such glaciers by snow avalanches, rockfalls, and landslides from local mountainsides 44 

onto the glacier surface (Figure 2, 3A), melt-out of englacial debris, thrusting transporting debris 45 

from the glacier bed, dust blown from exposed moraines, or solifluction from (ice-cored) moraines 46 

(Dunning et al., 2015; Gibson et al., 2017b; Hambrey et al., 2008; Kirkbride and Deline, 2013; 47 

Rowan et al., 2015; van Woerkom et al., 2019). The surface debris layer can range in thickness 48 

from scattered particles to several metres, including large rocks and substantial boulders (Figure 49 

3C and D) (Inoue and Yoshida, 1980; McCarthy et al., 2017; Nicholson et al., 2018). 50 

 51 

Figure 1 – Debris-covered glaciers in the Sagarmatha National Park, Nepal Himalaya, annotated 

with some of the features distinctive to High Mountain Asian debris-covered glaciers. A) Chola 

Glacier (image width is ~1.5 km across the glacier terminus and lake). B) Imja-Lhotse Shar Glacier, 

showing the terminus and calving front (~0.75 km width) into Imja Tsho, looking towards the 

accumulation area of the tributary Amphulapcha Glacier. C) Khumbu Glacier, showing the upper 

ablation area (clean-ice flowing from the Khumbu Icefall) to the left and the ~8 km long lower 
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ablation area (debris-covered tongue) to the right; dashed yellow lines are 100 m contours. Image 

credit for A and B: Katie Miles; and C: Tristram Irvine-Fynn. 

 Debris-covered glaciers are present in nearly all of Earth’s glacierised regions, with a 52 

particularly large concentration in High Mountain Asia (Bolch et al., 2012; Kraaijenbrink et al., 53 

2017; Scherler et al., 2018); sub-regional variability in the debris cover of which is presented in 54 

Brun et al. (2019) (their Figure 1). Debris-covered glaciers therefore contribute an important 55 

proportion of streamflow used for drinking water, irrigation, and hydroelectric power; this 56 

streamflow is particularly effective in reducing seasonal water shortages (Bolch et al., 2019; 57 

Immerzeel et al., 2020, 2010; Pritchard, 2019; Scott et al., 2019). Glacier mass loss in response to 58 

climate warming is currently increasing river discharge and contributions to sea level (Hock et al., 59 

2019; Lutz et al., 2014; Radić et al., 2014; Shea and Immerzeel, 2016), but studies simulating future 60 

scenarios universally project long-term reductions in flow, perhaps as soon as 2050 in central Asia 61 

(Barnett et al., 2005; Bolch et al., 2012; Huss and Hock, 2018; Lutz et al., 2014; Ragettli et al., 2016b; 62 

Rounce et al., 2020; Sorg et al., 2012). Passing of ‘peak water’ threatens future water security in 63 

many regions, particularly across High Mountain Asia (Bolch et al., 2019; Eriksson et al., 2009; 64 

Hannah et al., 2005; Huss and Hock, 2018; Immerzeel et al., 2010; Winiger et al., 2005). A decrease 65 

in discharge from the Indus and Brahmaputra rivers alone is estimated to affect 260 million people 66 

(Immerzeel et al., 2010). 67 

 The long-term response of debris-covered glaciers to changing climatic conditions is non-68 

linear and results from complexities relating to spatial variability in debris concentration and 69 

climatic controls integrated over at least several decades (Benn et al., 2012; Vaughan et al., 2013). 70 

A multidecadal trend of surface lowering, stagnation, and glacier mass loss has already been 71 

observed on many debris-covered glaciers across High Mountain Asia (Bolch et al., 2012, 2011; 72 

Brun et al., 2017; Dehecq et al., 2019; Hock et al., 2019; Kääb et al., 2012; Pellicciotti et al., 2015; 73 

Scherler et al., 2011) as a result of warmer air temperatures and weaker monsoons (Pieczonka et 74 

al., 2013; Thakuri et al., 2014). However, predictions of mass loss from individual glacierised 75 

regions vary considerably. For example, in the Everest region of the Himalaya, estimates of ice 76 

mass loss by 2100 vary from ~10% (Rowan et al., 2015), through 50% (Soncini et al., 2016), to 99% 77 

in extreme scenarios (warming of ~3°C) (Shea et al., 2015). Model outputs also vary spatially at a 78 

regional scale (e.g. Chaturvedi et al., 2014; Kraaijenbrink et al., 2017; Zhao et al., 2014). Such 79 

projections depend on the future climate scenario used, but a number of key knowledge gaps also 80 

exist concerning the character of debris-covered glaciers and the processes influencing their varied 81 

geometrical response to climate change (Benn et al., 2012; Bolch et al., 2012; Huss, 2011; Scherler 82 

et al., 2011). 83 

 Understanding how meltwater is produced, transported, and stored within High Mountain 84 

Asian debris-covered glaciers is therefore imperative. There is growing recognition that the 85 

configuration and efficiency (i.e. bulk system transit velocity) of water routing across and through 86 

debris-covered ice is distinctively different from that of clean-ice glaciers, even within the same 87 

glacial system. This was first shown by a recent study on Miage Glacier, a debris-covered glacier in 88 

the Italian Alps (Fyffe et al., 2019b). Debris-covered glacier surfaces are complex, particularly those 89 

in High Mountain Asia, the ablation areas of which are often characterised by hummocky, rugged 90 
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topography atop a shallow (or even reversed) longitudinal surface gradient (Figures 1 and 2). This 91 

commonly results from an inverted mass-balance regime, where the greatest ablation rates are 92 

experienced in the middle, rather than lower, ablation area (King et al., 2017). Debris-covered 93 

ablation areas also exhibit bare ice cliffs and supraglacial ponds – depressions capable of storing 94 

meltwater for both short and long periods within nested catchments of varying spatial scales 95 

(Section 2) – and these glaciers frequently terminate in proglacial lakes (Section 5). Other unique 96 

characteristics of High Mountain Asian debris-covered glaciers include the accumulation areas 97 

often being at extremely high elevations, with a steep surface gradient (often an icefall) 98 

transporting ice into the ablation area (Figure 1). These features provide a setting that strongly 99 

influences the nature of hydrological systems in this region (Benn et al., 2017; Miles et al., 2019), 100 

but has restricted hydrological research due to the remoteness and inaccessibility of such glaciers. 101 

 In this review, we consider the current state of knowledge of debris-covered glacier 102 

hydrological systems in High Mountain Asia. Four hydrological domains are considered in turn: 103 

supraglacial (Section 2), englacial (Section 3), subglacial (Section 4), and proglacial (Section 5). 104 

Within each section, we summarise existing research and understanding of debris-covered glacier 105 

hydrological systems and then address key remaining knowledge gaps. Figure 2 provides a 106 

reference conceptual diagram of a (High Mountain Asian) debris-covered glacier, with each 107 

hydrological feature encompassing both known and unknown elements of each domain. Finally, 108 

in light of the review, we propose six future research themes concerning the hydrology of debris-109 

covered glaciers (Section 6). This review is intended to complement existing reviews of clean-ice 110 

valley glacier hydrology (e.g. Fountain and Walder, 1998; Hubbard and Nienow, 1997; Irvine-Fynn 111 

et al., 2011; Jansson et al., 2003). We note that there are a number of differing climatic regimes 112 

across High Mountain Asia, with precipitation in particular varying closely with topography 113 

(Bookhagen and Burbank, 2006); these climatic regimes will influence the thermal regime, 114 

geometry, mass balance, and thus hydrology of the glaciers in each of these sub-regions. While 115 

our review draws on research carried out across High Mountain Asia, much of that research has 116 

been carried out in the monsoon-influenced Himalaya, particularly Nepal, from where the review 117 

and our illustrations of many of the key elements draw strongly. 118 
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 119 

Figure 2 – A conceptual illustration of the main landscape and hydrological features of a typical 

debris-covered glacier. Features specific to debris-covered glaciers in High Mountain Asia are 

labelled in Figure 1. 

2. Supraglacial hydrology 120 

2.1 Supraglacial zone 121 

2.1.1 Meltwater generation 122 

Supraglacial meltwater is produced on debris-covered glaciers through ablation of surface ice and 123 

snow, with the spatial pattern of melt complicated by the surface debris extent, thickness, and 124 

lithological characteristics (Figures 1 and 3). A debris layer shallower than the critical thickness, 125 

typically ~0.05 m, decreases albedo and thus increases the ablation rate compared to debris-free 126 

ice (Figure 4). The ablation rate peaks at a debris thickness of ~0.02–0.05 m, known as the effective 127 

thickness (Adhikary et al., 2000; Evatt et al., 2015; Inoue and Yoshida, 1980; Juen et al., 2014; 128 

Kayastha et al., 2000; Lejeune et al., 2013; Nicholson and Benn, 2013, 2006; Østrem, 1959; Singh 129 

et al., 2000; Takeuchi et al., 2000). The exact values of the critical and effective thickness strongly 130 

depend on the debris thermal conductivity, which can vary widely both across a glacier surface 131 

and in time according to whether the debris is wet or dry (Casey et al., 2012; Collier et al., 2015, 132 

2014; Gibson et al., 2017b; Nicholson and Benn, 2013; Pelto, 2000). In contrast, a debris layer 133 

thicker than the critical thickness of ~0.05 m insulates the ice from incoming solar radiation, 134 

inhibiting the receipt of surface energy at the ice-debris interface and thus reducing the melt rate 135 

(Figure 4). Beneath a debris thickness of 0.25–0.30 m, ice becomes almost fully insulated from 136 
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daily surface energy fluxes, with only longer-term changes in surface energy balance reaching the 137 

underlying debris-ice interface (Bocchiola et al., 2015; Brock et al., 2010; Conway and Rasmussen, 138 

2000; Nicholson and Benn, 2013; Østrem, 1959; Reid and Brock, 2010). In addition, turbulent 139 

energy fluxes have been shown to reduce net radiative fluxes at the debris surface (of a 0.75 m 140 

thick debris layer) by 17% over a full melt season, further diminishing the energy available for melt 141 

at the ice-debris interface (Steiner et al., 2018b). Variations in ablation according to these factors 142 

represent an important first-order control on glacier surface morphology and are partially 143 

responsible for the characteristic hummocky topography superimposed on a shallow or concave-144 

upward (reversed gradient) debris-covered glacier surface profile (Figure 1). 145 

 146 

Figure 3 – Images illustrating debris transport processes, englacial debris inclusions, and variations 

in supraglacial debris thickness on Khumbu Glacier, Nepal Himalaya: A) a landslide scar (yellow 

circle, ~500 m wide) and unstable rock faces (purple circle) providing debris to the glacier surface; 

image is taken looking east across the surface of Khumbu Glacier, and the debris layer above ice 

cliffs can also be seen. B) an ice cliff with entrained debris (green circle), debris-rich ice layers 

(orange circle), and a moderately thick (~1–2 m) surface debris layer; C) a thin (~0.20 m; red arrow) 

surface debris layer above ice adjacent to a supraglacial pond; and D) a thick (> 5 m; red arrow) 

surface debris layer above an ice cliff. Image credit for A: Duncan Quincey; and B–D: Katie Miles. 

Counteracting the influence of a thick surface debris layer, the ablation rate of debris-147 

covered glaciers is enhanced by the presence of supraglacial ponds (Section 2.1.2) and ice cliffs 148 
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(Figure 3B and D). The latter form by slumping of debris from steep slopes, calving at supraglacial 149 

pond margins (Section 2.1.2), or the collapse of englacial voids (Section 3.1), all of which expose 150 

steep, bare ice (Figure 3B) or thinly debris-covered  faces (Figure 3D) at the glacier surface (Benn 151 

et al., 2012, 2001; Sakai et al., 2002; Thompson et al., 2016). The melting of ice cliffs can be 152 

responsible for a substantial proportion of debris-covered glacier ablation (Brun et al., 2016; Buri 153 

et al., 2016b; Han et al., 2010; Juen et al., 2014; Reid and Brock, 2014; Sakai et al., 2002, 2000; 154 

Thompson et al., 2016), accounting for 23–69% of the total ablation of debris-covered areas whilst 155 

covering a small proportion of the total glacier area. The ice cliffs exhibit melt rates that are 3–14 156 

times higher than beneath debris-covered ice (Brun et al., 2018; Immerzeel et al., 2014; Sakai et 157 

al., 1998). Where ice cliffs are associated with supraglacial ponds, there is further potential for 158 

increased melting through undercutting and calving processes (Brun et al., 2016; Buri et al., 2016a; 159 

Miles et al., 2016; Röhl, 2008; Thompson et al., 2016). Taken together, ice cliff and pond systems 160 

may contribute considerably to the surface lowering of debris-covered glaciers in the central 161 

ablation area (King et al., 2017; Nuimura et al., 2012; Pellicciotti et al., 2015; Ragettli et al., 2016a; 162 

Thompson et al., 2016; Watson et al., 2017), contributing to the inverted mass-balance regime 163 

typical of High Mountain Asian debris-covered glaciers. 164 

 165 

Figure 4 – Østrem curve examples showing variations in the relationship between debris thickness 

and ice ablation on different glaciers. (a) notes the effective thickness, namely the debris thickness 

at which maximum melt occurs. (b) marks the critical thickness, the debris thickness at which melt 

becomes inhibited compared to that of clean ice on different glaciers (indicated on both for 

Isfjallsglaciaren). From Nicholson & Benn (2006). 

2.1.2 Meltwater storage 166 

Supraglacial ponds (Figure 5), a term used here to include larger water bodies elsewhere 167 

sometimes referred to as lakes, are common and important features on debris-covered glaciers. 168 

Ponds are generally absent from clean-ice valley glaciers but are prevalent on low-gradient areas 169 

of ice sheet margins (Chu, 2014; Sundal et al., 2009). Similarly for debris-covered glaciers, the most 170 

important control on the location of supraglacial pond formation is a low glacier surface slope 171 

(Miles et al., 2017b; Quincey et al., 2007; Reynolds, 2000; Sakai, 2012; Sakai et al., 2000; Sakai and 172 
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Fujita, 2010; Salerno et al., 2012). A surface gradient of ≤ 2° is considered to promote the 173 

development of larger ponds, while smaller isolated and transient ponds are considered more 174 

likely on steeper slopes (Miles et al., 2017b; Quincey et al., 2007; Reynolds, 2000). The upglacier 175 

slope has also been shown to have an influence, being inversely correlated to the total area of 176 

lakes downglacier (Salerno et al., 2012). 177 

Glacier velocity and motion type also exert controls over supraglacial pond location. An 178 

increase in lake concentration is common towards the termini of debris-covered glaciers, areas 179 

that are typically characterised by low surface velocities (Kraaijenbrink et al., 2016b; Miles et al., 180 

2017b; Quincey et al., 2007; Sakai, 2012; Salerno et al., 2015, 2012). A decrease in velocity towards 181 

both the glacier terminus and ice inflow at the confluences of flow units (Kraaijenbrink et al., 182 

2016b) causes compressive flow, which tends to close crevasses and drive water back to the 183 

surface, as well as limiting effective drainage from the glacier surface (Kraaijenbrink et al., 2016b; 184 

Miles et al., 2017b). The thinning and stagnation of debris-covered glacier termini may also 185 

enhance meltwater production, further promoting the formation of ponds (Salerno et al., 2015; 186 

Thakuri et al., 2016). 187 
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Figure 5 – Examples of supraglacial pond size and temporal changes on Khumbu Glacier, Nepal 

Himalaya. Ponds range in diameter from: A) several metres; B) tens of metres (person circled in red 

for scale); C) and D) hundreds of metres; E) and F) several kilometres. A) and B) are located in the 

upper ablation area. C) and D) show the same pond-cliff-cave system in the mid-ablation area two 

years apart, with notable expansion of the cave via undercutting and calving. The pond, which has 

reduced in area (likely partly drained), was filled with a large amount of small, calved ice blocks in 

May 2019 and large cracks in the cliff system suggest further imminent large-scale calving. E) and 

F) show the expanding linked supraglacial pond chain at the terminus, also two years apart (green 

star indicates the same location as images were taken from slightly different positions). Pond 

growth and coalescence has progressively eroded the hummocks that formerly separated these 
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ponds. Higher melt rates are indicated by the covering of ice cliffs in fine debris (‘dirty ice’). Image 

credit for A–D and F: Katie Miles; and E: Evan Miles. 

Initial supraglacial pond growth occurs primarily through subaqueous melting at the base 188 

of any slight depression (Chikita et al., 1998; Mertes et al., 2016; Miles et al., 2016; Stokes et al., 189 

2007; Thompson et al., 2012). Water accumulates and is heated by incoming solar radiation, 190 

causing the pond to warm. For example, Chikita et al. (1998) measured a maximum temperature 191 

of ~5°C at a supraglacial pond surface on Trakarding Glacier, Nepal Himalaya. Excess energy is thus 192 

available for lateral and vertical ablation wherever pond water is in contact with ice, increasing the 193 

pond size, steepening marginal slopes and mobilising debris to expose bare ice (Figure 5E and F) 194 

(Stokes et al., 2007). Subaqueous pond melt rates are greatest when bare ice is exposed or covered 195 

in a thin layer of debris; layers of thick sediment at the base of ponds effectively terminate bottom 196 

deepening by preventing transfer of energy from the warmer pond water to the ice surface 197 

(Horodyskyj, 2015). Furthermore, mixing of pond stratification by inflowing meltwater on Koxkar 198 

Glacier, Tien Shan, has been shown to increase the temperature (by ~4°C) and density of the pond 199 

(Wang et al., 2012). Here, the warmed surface water sinks to the pond base and increases the 200 

potential for subaqueous melting; a process that can also be induced by wind-driven currents 201 

(Chikita et al., 1998). 202 

Supraglacial ponds surrounded by ice cliffs tend to be larger and deeper than those without 203 

cliffs (Watson et al., 2018), as the ice cliffs facilitate pond growth by subaerial melting and 204 

backwasting, particularly during the monsoon melt season (Röhl, 2008; Steiner et al., 2019). Where 205 

warm surface pond water meets glacier ice, it can undercut the cliff beneath the waterline; 206 

progressive undercutting and thermo-erosional notch development may then lead to calving of 207 

the ice cliff and pond expansion (Figure 5C and D) (Chikita et al., 1998; Kirkbride and Warren, 1997; 208 

Mihalcea et al., 2006; Miles et al., 2016; Röhl, 2008, 2006; Sakai et al., 2009). Conversely, where 209 

the subaqueous and ice cliff melt rates are similar, the ice cliff will persist and backwaste stably 210 

(Brun et al., 2016; Buri et al., 2016a; Miles et al., 2016). Calving is most effective at larger ponds 211 

(Röhl, 2008), in particular where the fetch is greater than 20 m and the water temperature is 2–212 

4°C (Sakai et al., 2009). Calving events cause further mixing of pond layers, driving warmer surface 213 

water towards the base and again enhancing basal melting; the greatest supraglacial pond 214 

deepening rates have been shown to occur adjacent to the tallest calving ice cliffs (Thompson et 215 

al., 2012). Although sedimentation from ice cliffs and inflowing water can reduce pond depth, this 216 

effect is commonly outstripped by ablation (Thompson et al., 2012), resulting in general long-term 217 

pond growth. 218 

A pattern of supraglacial pond evolution into ice-marginal moraine-dammed lakes has been 219 

observed for some ponds on debris-covered glaciers in High Mountain Asia. Supraglacial ponds 220 

form initially as ‘perched ponds’, isolated above the englacial drainage network (Benn et al., 2012). 221 

As these ponds increase in area and depth, they evolve from perched to base-level features, where 222 

the base-level is determined by the height at which water leaves the glacial system (usually the 223 

elevation of a spillway through the terminal moraine or the glacier bed, if water is transported 224 

there) (Mertes et al., 2016; Thompson et al., 2012; Watanabe et al., 2009). However, differing sub-225 

catchments may have differing base-levels defined by other hydrological features such as moulins, 226 
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resulting in a stepped hydrological cascade based on several local base-levels. Alternatively, the 227 

presence of a groundwater system can result in a regional base-level. Over an extended period of 228 

glacier recession, an increasing number of supraglacial ponds form and grow over time, creating a 229 

chain of terminus-base-level ponds that eventually coalesce (Figure 5E and F) (Sakai, 2012; Salerno 230 

et al., 2012). The growth of base-level ponds is not limited by periodic drainage, potentially 231 

allowing dramatic increases in area, particularly through calving (Benn et al., 2001; Sakai, 2012; 232 

Thompson et al., 2012). If meltwater cannot escape from the system, pond expansion and 233 

coalescence may eventually lead to the formation of a single base-level moraine-dammed 234 

proglacial lake at the glacier terminus (Section 5.1.1) (Mertes et al., 2016; Watanabe et al., 2009) 235 

that will continue to expand both upglacier and downwards by ice melt. 236 

Various stages of this supraglacial pond evolution are simultaneously present on many High 237 

Mountain Asian debris-covered glaciers. An increase in supraglacial pond area and proglacial lake 238 

formation, assumed to be in response to a warmer climate and glacier surface lowering, has been 239 

observed in recent decades in, for example, the Tien Shan (Wang et al., 2013), Bhutan Himalaya 240 

(Ageta et al., 2000; Komori, 2008), and Nepal Himalaya (Benn et al., 2000; Watson et al., 2016). 241 

Within the Hindu-Kush Himalaya, a clear divide has appeared between the East, where there are 242 

a greater number of larger ponds that have grown between 1990–2009 and become increasingly 243 

proglacial, and the West, where already generally smaller supraglacial ponds have been decreasing 244 

further in area (Gardelle et al., 2011). However, local variations do occur and the pattern is not 245 

universal (e.g. Steiner et al., 2019). 246 

As isolated perched ponds grow, they can deepen such that they become connected to the 247 

englacial system by intersecting englacial flow pathways, and drain (Benn et al., 2001; Liu et al., 248 

2015; Röhl, 2008; Watson et al., 2018, 2016; Wessels et al., 2002), temporarily halting further pond 249 

expansion (Mertes et al., 2016). Pond drainage is promoted in zones of higher local surface velocity 250 

and strain rates, connecting the supraglacial and englacial drainage networks and resulting in 251 

smaller-sized ponds (Miles et al., 2017b). However, as noted above, ponds are generally more 252 

likely to form in areas with lower surface velocities. Ponds may also drain by preferentially 253 

exploiting inherited structural weaknesses such as (sediment-filled) crevasse traces, open 254 

crevasses, and englacial conduits that have been forced closed by longitudinal compression, 255 

allowing drainage by hydrofracture (the penetration of a water-filled crevasse through an ice mass 256 

assisted by the additional pressure of the water at the crevasse tip) (Benn et al., 2017, 2012, 2009; 257 

Gulley and Benn, 2007; Miles et al., 2017b). Alternatively, perched ponds may drain by overspilling, 258 

when a channel is melted into the downstream end of a pond. If, during drainage, such a channel 259 

incises faster than the pond lowers then unstable and potentially catastrophic drainage can result 260 

(Liu et al., 2015; Raymond and Nolan, 2000). However, analyses on Lirung Glacier, Nepal Himalaya, 261 

provided strong evidence for continuous inefficient drainage of supraglacial ponds, likely into 262 

debris-choked englacial conduits (Miles et al., 2017a). 263 

A periodic cycle of supraglacial pond expansion and drainage may occur until the pond 264 

becomes large enough to become permanently connected to the englacial system, and thus 265 

stabilise due to inputs of meltwater from streams and other ponds located farther upglacier (Benn 266 

et al., 2001; Miles et al., 2017a; Wessels et al., 2002). An abundant supply of meltwater from the 267 
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ice surface or the wider drainage system is evidenced by ponds with a high suspended-sediment 268 

concentration (Takeuchi et al., 2012). A seasonal pattern of supraglacial pond filling and drainage 269 

has been observed at seven glaciers in the Tien Shan, with 94% of observed ponds draining during 270 

the monsoon every year between 2013–2015 (Narama et al., 2017). Similar cycles were reported 271 

for five glaciers in Langtang Valley, Nepal Himalaya, where the maximum ponded area between 272 

1999–2013 occurred early in the melt season, subsequently decreasing as ponds drained or froze 273 

(Miles et al., 2017b). Conversely, larger ponds have been observed to drain incompletely and 274 

separate into multiple smaller ponds, subsequently refilling to re-form one large pond (Benn et al., 275 

2001; Miles et al., 2017b; Wessels et al., 2002). Warmer spring temperatures have been noted to 276 

correlate with a greater number of drainage events later the same year, likely due to larger 277 

meltwater inputs earlier in the year triggering redevelopment of the subsurface drainage system 278 

(Liu et al., 2015). 279 

Supraglacial ponds are responsible for a large proportion of debris-covered glacier ablation, 280 

absorbing heat up to 14 times more quickly than even the debris-covered area. In the Langtang 281 

Valley, Nepal, this accounted for 12.5% of catchment ice loss (E. S. Miles et al., 2018b). However, 282 

linked supraglacial pond chains have been suggested to provide only a small proportion of total 283 

glacier proglacial discharge (Irvine-Fynn et al., 2017; Miles et al., 2019), primarily storing meltwater 284 

and thus increasing the potential for enhanced ablation. Ponds release ≥ 50% of their absorbed 285 

energy with the melt output from the pond, contributing to internal melting along supraglacial and 286 

englacial conduits (Miles et al., 2016; Sakai et al., 2000). This in turn may lead to englacial roof 287 

collapse and the formation of new ponds (Benn et al., 2012; Miles et al., 2017a; Sakai et al., 2000), 288 

resulting in a net glacier-wide increase in ablation. The growing presence of ponds has been 289 

described as the clearest indicator of the influence of climate change on debris-covered glaciers 290 

(Salerno et al., 2012). 291 

2.1.3 Meltwater transport 292 

Supraglacial streams (Figure 6) on High Mountain Asian debris-covered glaciers vary widely in 293 

prevalence, size, and length. To exist and persist, a supply catchment is required (Benn et al., 2017; 294 

Gulley et al., 2009a) and the rate of stream incision, driven by thermal erosion, must outpace the 295 

rate of surface lowering (Marston, 1983). Such conditions may be promoted beneath thicker debris 296 

that suppresses surface ablation in the lower ablation area (Benn et al., 2017), yet observations of 297 

streams in this region are rare, likely due to the hummocky topography both limiting the size of 298 

supraglacial catchments (Fyffe et al., 2019b) and preventing any streams that do form from 299 

persisting for long distances (Benn et al., 2017). Farther upglacier, often under conditions of strong 300 

longitudinal extension associated with ice falls, open crevasses are common and also suppress 301 

supraglacial stream development (Benn et al., 2017). Most supraglacial streams have therefore 302 

been observed in the upper to mid-ablation area (Figure 6A-D) (Gulley et al., 2009a; Miles et al., 303 

2019), downglacier of crevasse fields but still upglacier of the pronounced hummocky topography 304 

and thick debris layer (Section 2.1.1). 305 

 A perennial supraglacial stream (Figure 6A-D) has been present in the upper ablation area 306 

of Khumbu Glacier, Nepal Himalaya, for over 14 years (Gulley et al., 2009a; Miles et al., 2019). This 307 

stream and its smaller tributaries originate just downglacier of the Khumbu icefall, where the mean 308 
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longitudinal surface gradient decreases dramatically (Figure 1), from ~23° down the icefall to ~3° 309 

just below the clean-ice region (estimated from Shean (2017) over one km segments of the 310 

glacier’s central flowline). The low surface gradient of the ablation area results in this channel 311 

having a high sinuosity (Miles et al., 2019). As streams transfer meltwater downglacier, they can 312 

incise effectively into the glacier surface (Figure 6B and C); one channel had melted 5–10 m deep 313 

by the time it reached the lower ablation area (Gulley et al., 2009a; Iwata et al., 1980). Such incision 314 

is evident where the channel sides and surrounding glacier surface have ablated more slowly than 315 

the channel itself, leaving walls of horizontally notched ice showing former, less incised channel 316 

elevations (Figure 6C). Supraglacial streams may drain into debris-covered glaciers through 317 

crevasses or moulins (Gulley et al., 2009a; Iwata et al., 1980), or through channel ‘cut-and-closure’ 318 

(see Section 3.1) (Gulley et al., 2009a; Jarosch and Gudmundsson, 2012). Relict channels 319 

abandoned by continued incision can often be exposed on the surface as a result of spatially 320 

variable surface lowering (Figure 6D). 321 

 322 

Figure 6 – Examples of supraglacial streams on Khumbu Glacier, Nepal Himalaya, in: A-C) the upper 

ablation area, incised into the ice beneath the debris layer. Blue arrows indicate water flow 

direction; yellow arrows indicate abandoned/relict channels. The supraglacial stream in A) is 

extensive, sinuous, and very well developed, transporting large volumes of meltwater efficiently. 

B) and C) are upstream of A) (white and black star, respectively): B) shows a relict, debris-filled 

meander bend which has been superseded by a more direct channel; C) shows multiple levels of 

stream incision (grooves indicated by red dashed line, ~1 m high); D) the mid-ablation area, where 

the same incised channel becomes englacial through cut-and-closure after several hundred metres 

of progressive downcutting, visible from the multiple relict levels (channel drop in the image is ~10 

m); E) and F) the lower ablation area. The channel in E) is a short stretch between a supraglacial 

pond and a shallow moulin, flowing over the debris layer. The stream in F) flows into a breach in 

the lateral moraine to form the proglacial stream; here, it has eroded into the sand-like sediment 

across a basin that seasonally floods. Images in A, E, and F were taken during fluorescein dye 
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tracing experiments (Miles et al., 2019). Image credit for A: Duncan Quincey; B, C, and E: Katie 

Miles; D: Evan Miles; and F: Bryn Hubbard. 

 Supraglacial streams can undergo rapid pathway changes. Figure 6B shows a debris-filled 323 

section of channel, abandoned as meltwater progressively took a more direct route, leaving a 324 

central island of protruding ice. This process may have been similar to the formation of an ox-bow 325 

lake in an abandoned terrestrial river meander. However, the abandoned channel section may be 326 

reactivated during times of high flow, evidenced by the presence of thick, evenly spread debris 327 

deposits in Figure 6B. Farther downglacier, where supraglacial stream observations are rarer, 328 

pathway changes have also been witnessed on short timescales (Miles et al., 2019). In Figure 6E, 329 

the stream flows into a shallow moulin, yet within 10 days this moulin had collapsed and been 330 

abandoned, with the stream routing into a new moulin just upstream. Moulin collapse has been 331 

attributed to the highly spatially variable surface lowering and ablation rates on debris-covered 332 

glaciers (Miles et al., 2019), while the short timescale indicates that the new moulin exploited an 333 

existing weakness in the ice. 334 

2.2 Supraglacial knowledge gaps 335 

Predictions of future mass balance regimes on High Mountain Asian debris-covered glaciers are 336 

uncertain. Surface lowering is leading to both an overall increase in debris thickness (Gibson et al., 337 

2017a) and an upglacier emergence of a thin supraglacial debris layer. These processes will likely 338 

further decrease albedo and increase surface meltwater production (thereby increasing surface 339 

lowering, potentially leading to a positive cycle until debris thickens sufficiently to insulate the 340 

surface) (Kirkbride and Warren, 1999; Stokes et al., 2007). Measuring meltwater production is 341 

crucial, but difficult beneath (thin) debris layers, and often impossible where access to the ice-342 

debris interface is not feasible. More broadly, the future evolution of debris-covered glacier 343 

surface geometry remains inadequately addressed, for example, whether meltwater will primarily 344 

be transported rapidly off the glacier in channels or stored within large systems of linked 345 

supraglacial ponds, thereby buffering diurnal proglacial discharge. 346 

On a finer scale, a detailed process understanding of meltwater storage and transport 347 

through supraglacial ponds and pond systems is lacking, particularly of water circulation within, 348 

between, and out of ponds. While often just one discrete, channelised output is visible, water has 349 

also been observed to seep beneath the debris layer and emerge in unexpected locations (Miles 350 

et al., 2019). There has been little focus on how these links between ponds will change as ponds 351 

expand and eventually coalesce. Volumetric measurements of supraglacial ponds are scarce, 352 

rendering it difficult to accurately calculate how much meltwater is being stored on the glacier 353 

surface. Additionally, little attention has been paid to the effect of debris (heated by solar 354 

radiation) falling into a pond on the pond temperature and thus its subaqueous melt rate. 355 

Understanding of the various pathways and rates of meltwater transport across a debris-356 

covered glacier surface would benefit from additional focused research. For example, supraglacial 357 

streams are commonly difficult to discern in debris-covered regions of the glacier surface; this is 358 

particularly true for smaller surface streams and diffuse flows, which are less easily located and 359 

consequently remain largely unreported. On a smaller scale, the occurrence of some ice ablation 360 
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beneath even a thick debris layer implies that during much of the ablation season, water must 361 

exist between the ice surface and the debris layer (McCarthy et al., 2017), likely as a thin but 362 

variable film. However, the planform structure and meltwater transport of any such drainage 363 

network remain unknown, although transport must subsequently occur as a saturated surface 364 

layer or - initially at least - as small, inefficient rivulets. 365 

Water storage within and below the supraglacial debris layer is likely but unexplored. Such 366 

storage would introduce temporary delays in the transport of meltwater through the system, thus 367 

affecting meltwater hydrochemistry (Tranter et al., 2002, 1993), the development of other parts 368 

of the drainage network, and proglacial discharge. However, despite its importance in contrasting 369 

with standard models of supraglacial hydrology based on research at clean-ice glaciers, small-scale 370 

meltwater storage delays remain unknown, which at least partly results from the difficulty 371 

involved in gaining access to the ice-debris interface beneath thick surface debris. Similar issues 372 

are present for the hydrology of snowpacks overlying thick debris; the extent that the snowpack 373 

delays runoff and how much snowmelt enters the hydrological system are similarly unaddressed. 374 

3. Englacial hydrology 375 

3.1 Englacial zone 376 

Exceptionally, englacial conduits at High Mountain Asian debris-covered glaciers have been at least 377 

as well explored by glaciospeleologists as at clean-ice glaciers. Such exploration has been carried 378 

out primarily in the Nepal Himalaya, including at Khumbu Glacier (Gulley et al., 2009a), Ngozumpa 379 

Glacier (Benn et al., 2017, 2009; Gulley and Benn, 2007), Ama Dablam and Lhotse Glaciers (Gulley 380 

and Benn, 2007), as well as several debris-covered glaciers in the Tien Shan (Narama et al., 2017). 381 

Largely on the basis of such studies, Gulley et al. (2009) proposed three formation mechanisms for 382 

englacial conduits within debris-covered glaciers: 383 

I. Cut-and-closure type conduits appear to be particularly prevalent within High 384 

Mountain Asian debris-covered glaciers, relative to clean-ice counterparts. Since the 385 

process requires more rapid supraglacial channel incision than surface ablation, this 386 

prevalence could result from the presence of cold surface ice and/or surface debris, 387 

both impeding general surface lowering. Under such conditions, incision will continue 388 

to the hydrologic base-level of the glacier (Section 2.1.2), with englacial conduits 389 

forming by supraglacial channel closure from snow infill and, in some cases, by ice creep 390 

(Gulley et al., 2009b, 2009a). These conduits may be repeatedly abandoned and 391 

reactivated as water supply varies through the year. However, such conduits rarely 392 

close completely due to their shallow depth below the surface, and may contain 393 

sediment that provides lines of secondary permeability by which the conduit may 394 

subsequently be reactivated (Benn et al., 2009; Gulley et al., 2009a; Gulley and Benn, 395 

2007). Cut-and-closure conduits have been reported on Khumbu (Gulley et al., 2009a) 396 

and Ngozumpa Glaciers (Thompson et al., 2012). 397 

II. Meltwater may aggregate to form englacial conduits by exploiting lines/planes of 398 

secondary permeability; for example, those left by relict cut-and-closure conduits or 399 

debris-filled and/or compressed former surface crevasses (Benn et al., 2012; Gulley et 400 
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al., 2009b; Gulley and Benn, 2007; E. S. Miles et al., 2018a). Along these low-401 

permeability zones, discharge through the icy matrix leads to the development of 402 

enlarging lines of preferential flow due to viscous heat dissipation, eventually forming 403 

an englacial conduit (Benn et al., 2012). 404 

III. Englacial conduits may also form by hydrofracturing (Benn et al., 2012, 2009; Gulley et 405 

al., 2009b), though this process is generally restricted to upper, debris-free areas where 406 

surface runoff can enter open crevasses (Benn et al., 2012). In the lower ablation area, 407 

low surface gradients, low strain, and compression reduce the capacity for crevassing. 408 

Conduit formation by hydrofracturing has been invoked in association with longitudinal 409 

crevasses on Khumbu Glacier (Benn et al., 2012, 2009), promoted by the combined 410 

effect of transverse stresses and high water pressure at the base of supraglacial lakes. 411 

Multiple stages of hydrofracture, followed by conduit closure through freeze-on, were 412 

interpreted from a series of successively lower niches eroded into pond walls (Benn et 413 

al., 2009). 414 

 If a stream exploits a crevasse for sufficient time, it forms a moulin, as on clean-ice glaciers. 415 

Although such instances are rare, steep-gradient moulins have been observed in the upper 416 

ablation area of some High Mountain Asian debris-covered glaciers (e.g. Southern Inylchek Glacier, 417 

Tien Shan and Baltoro Glacier, Pakistan Karakoram (Narama et al., 2017; Quincey et al., 2009)), 418 

and a shallow-gradient moulin reported in the lower ablation area of Khumbu Glacier (Figure 6E) 419 

(Miles et al., 2019). Indeed, explored englacial conduits, such as on Khumbu and Ngozumpa 420 

Glaciers, also had shallow gradients (Benn et al., 2017; Gulley et al., 2009a; Gulley and Benn, 2007), 421 

suggesting predominant formation in these instances by cut-and-closure rather than crevasse 422 

exploitation. 423 

 Englacial conduits have been observed at multiple elevations within High Mountain Asian 424 

debris-covered glaciers, often showing numerous levels of incision hypothesised to result from 425 

sequential supraglacial pond drainage events as the base-level has moved (Gulley et al., 2009a; 426 

Gulley and Benn, 2007). According to this model, each conduit can have varying local base-levels 427 

through time (Section 2.1.2), with elevations ultimately limited by the glacier’s contemporary 428 

base-level, determined by the height at which water leaves the glacier (Gulley et al., 2009a; Gulley 429 

and Benn, 2007). Furthermore, as the surface gradient of the ablation area of debris-covered 430 

glaciers is typically very low, the hydraulic gradient (Shreve, 1972) is correspondingly low, 431 

encouraging meandering and the formation of sinuous englacial conduits (Miles et al., 2019), as 432 

observed on Khumbu and Ngozumpa Glaciers (Benn et al., 2017; Gulley and Benn, 2007). 433 

 Longer-distance water transport has been inferred to occur through perennial sub-434 

marginal conduits, likely formed by cut-and-closure, located along the edge of debris-covered 435 

glaciers (Benn et al., 2017; Thompson et al., 2016). Such marginal features provide longer-distance 436 

and more hydraulically efficient pathways than conduits within the central glacier, due to the 437 

frequent presence of infilled crevasse traces that can be exploited by water flowing at the margins 438 

(Gulley and Benn, 2007). Centrally located englacial conduits may become re-exposed due to 439 

lowering of the surrounding surface, routing water back to the surface (Figure 7) (Miles et al., 440 
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2019). This process may make these conduits more discontinuous, particularly when combined 441 

with the commonly hummocky topography (Miles et al., 2017a). 442 

 Englacial systems have been observed at shallow depths below the surfaces of High 443 

Mountain Asian debris-covered glaciers. These typically consist of short conduits (channelised, 444 

distributed or a combination), englacial reservoirs, and/or shallow moulins, primarily linking 445 

supraglacial ponds (Miles et al., 2017a, 2019; Narama et al., 2017). Such linked supraglacial-446 

englacial systems may be created and/or maintained by supraglacial pond drainage into englacial 447 

conduits (Gulley and Benn, 2007; Narama et al., 2017). Narama et al. (2017) found that the 448 

seasonal drainage cycle of supraglacial ponds on seven Tien Shan glaciers was characterised by a 449 

connection to an established englacial drainage system later in the summer; 94% of ponds drained 450 

and connected during all three years studied. Englacial conduits may thus play an important role 451 

in the life cycles of perched ponds (Benn et al., 2017; Miles et al., 2017a). 452 

 Deeper englacial drainage networks can vary in efficiency in response to numerous factors, 453 

including supraglacial pond drainage events. On Dokriani Glacier, Garhwal Himalaya, englacial 454 

conduits were inferred to be efficient and active through the entire melt season, with proglacial 455 

discharge proportional to supraglacial water production (Hasnain and Thayyen, 1994). Conversely, 456 

on Khumbu Glacier, a channelised but inefficient englacial system was inferred in the pre-monsoon 457 

season (Miles et al., 2019). This system did not link to the supraglacial pond chain, but was routed 458 

to the surface close to the terminus, suggesting that deep englacial to shallow-englacial-459 

supraglacial links are also possible. While this inefficient englacial system was characterised by 460 

slow transport velocities, previous observations of faster transit through Khumbu Glacier during 461 

the drainage of a tributary glacier’s supraglacial pond implies that the system can adapt rapidly to 462 

greater meltwater inputs (E. S. Miles et al., 2018a; Miles et al., 2019). 463 

 464 

Figure 7 – A relict englacial conduit (~10 m in height) in the centre of an ice cliff on Khumbu Glacier, 

Nepal Himalaya, exposed after a drainage event of the associated supraglacial pond, viewed: A) 

from upglacier, and B) from downglacier. On the downglacier side, tens of metres of surface 

lowering has occurred and the previously englacial conduit is now visible from the surface, 

meandering and incising for ~200 m farther downglacier before flowing into a pond. Image credit 

for A: Evan Miles; and B: Katie Miles. 
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 The efficiency of englacial meltwater transport has also been noted to change through the 465 

melt season at High Mountain Asian debris-covered glaciers. The influx of large volumes of 466 

monsoon precipitation during the summer months may result in the reopening of englacial (and 467 

subglacial) conduits, giving potential for considerable englacial ablation (Benn et al., 2012); for a 468 

surface pond of 500 m2, sufficient energy to melt ~2,600 m3 of temperate ice is released over a 469 

single monsoon season (Miles et al., 2016). This additional meltwater ultimately leads to conduit 470 

erosion (Miles et al., 2017b; Sakai et al., 2000), which may be further enhanced by pond drainage 471 

events, as the warmer drained water (Section 2.1.2) conveys large amounts of energy, adding 472 

further to total glacier mass loss (Benn et al., 2012; Miles et al., 2016; Sakai et al., 2000; Thompson 473 

et al., 2016). 474 

 For englacial conduits located near the surface, rapid expansion can result in conduit 475 

collapse if the ceiling is not sufficiently supported. A supraglacial, possibly relict, channel formed 476 

from englacial conduit collapse exposes new bare ice faces, including ice cliffs, which may then 477 

contribute to more rapid lowering of the glacier surface (Section 2.1.1) (Benn et al., 2017; 478 

Kraaijenbrink et al., 2016b; Miles et al., 2016; Sakai et al., 2000; Thompson et al., 2016, 2012). 479 

Ablation rates and surface subsidence can be further enhanced if the new depression becomes 480 

flooded by that increased meltwater production, supplemented by upglacier inputs, providing new 481 

depressions for supraglacial ponds to form or expand and coalesce (Section 2.1.2) (Benn et al., 482 

2012, 2001; Kirkbride, 1993; Kraaijenbrink et al., 2016b; Miles et al., 2017a; Sakai et al., 2000; 483 

Thompson et al., 2012). 484 

Meltwater may be stored englacially within debris-covered glaciers, ranging from small, 485 

shallow englacial reservoirs (Miles et al., 2019) to deeper and potentially larger reservoirs. The 486 

latter type has been inferred, for example, for glaciers feeding the Hunza river system, Central 487 

Karakoram, at the start of the melt season due to a notable lag between the initiation of glacier 488 

ablation and higher discharges observed downstream (Hewitt et al., 1989). Similarly, the initiation 489 

of an outburst flood at Lhotse Glacier was partly attributed to the release of meltwater stored 490 

within englacial conduits that became over-pressurised from greater meltwater production and 491 

transit during the transitional pre-monsoon season (Rounce et al., 2017). Other inferences have 492 

been made from supraglacial pond water-level measurements, such as at Imja Tsho, Nepal 493 

Himalaya, where the post-melt season lake level was constant despite lower air temperatures and 494 

lower precipitation, which would both serve to reduce meltwater production. This situation was 495 

explained by recharge from englacially and subglacially stored water being progressively released 496 

over time (Thakuri et al., 2016). 497 

3.2 Englacial knowledge gaps 498 

Despite relatively extensive englacial glaciospeleological exploration, numerous gaps remain in our 499 

knowledge of the englacial drainage of High Mountain Asian debris-covered glaciers. For example, 500 

as at clean-ice glaciers, the thermal regime of the glacier exerts a significant control on the location 501 

and formation of an englacial drainage system, yet the thermal regime is unknown for almost all 502 

High Mountain Asian debris-covered glaciers. A recent study suggested that the lower area of 503 

Khumbu Glacier may primarily comprise temperate ice (K. E. Miles et al., 2018) allowing the 504 

existence of a deep englacial drainage system (Miles et al., 2019). However, this research was 505 
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confined to a single glacier and its representativeness for other debris-covered glaciers in High 506 

Mountain Asia remains unknown. 507 

 Knowledge of the influence of supraglacial debris on englacial (and subglacial) drainage 508 

systems is incomplete. On Miage Glacier, the upglacier ice, which is cleaner and covered with a 509 

thin supraglacial debris layer, was shown to produce an efficient subsurface drainage system to 510 

the terminus from early in the melt season. In contrast, the heavily debris-covered lower ablation 511 

area restricted the development of supraglacial drainage, leading to an inefficient subsurface 512 

system that ultimately flowed into the efficient system driven from upglacier (Fyffe et al., 2019b). 513 

While there are similarities between the drainage system of Miage and the few High Mountain 514 

Asian debris-covered glaciers studied, the generally thicker debris layer and much greater 515 

prevalence of supraglacial ponds towards the terminus of the latter will additionally influence the 516 

hydrological system of such glaciers – an influence that remains unexplored. 517 

 Improved understanding is required of the links between the englacial system and other 518 

hydrological domains, such as supraglacial-to-englacial transitions (through cut-and-closure 519 

conduits, weaknesses in the ice, and supraglacial pond drainages). Research into the shallow 520 

englacial system is needed, including determining how much of a distinction there is between 521 

shallow englacial and supraglacial systems, considering the rapidly changing surface topography 522 

that is typical of High Mountain Asian debris-covered glaciers. Finally, the potential for englacial 523 

meltwater storage has received very little attention. 524 

4. Subglacial hydrology 525 

4.1 Subglacial zone 526 

Knowledge of subglacial drainage at High Mountain Asian debris-covered glaciers is limited, 527 

although some evidence at least points to the existence of such systems. For example, 528 

glaciospeleological investigations indicated that the proglacial stream of a retreating tributary of 529 

Khumbu Glacier reached Khumbu’s bed (Benn, pers. comm., 2018). This conduit was assumed to 530 

follow the bed for some distance downglacier, similar to the perennial sub-marginal conduits 531 

present at the edge of the neighbouring Ngozumpa Glacier (Benn et al., 2017; Miles et al., 2019; 532 

Thompson et al., 2016). However, this water did not persist subglacially, and instead was 533 

documented to exit the glacier supraglacially. This upward routing of water likely occurs due to 534 

the commonly high hydrological base-level of such glaciers, possibly following the glacier’s cold-535 

temperate transition surface (K. E. Miles et al., 2018; Miles et al., 2019). 536 

Beyond the studies outlined above, all other information relating to the subglacial drainage 537 

of High Mountain Asia debris-covered glaciers is inferred. For example, the presence of meltwater 538 

at the bed has been inferred from surface velocity records from remote sensing (e.g. Quincey et 539 

al., 2009) or field-based GPS (e.g. Tsutaki et al., 2019), using inferences similar to those for clean-540 

ice glaciers. Relatively rapid surface velocities in the central areas of glaciers have been recorded 541 

during summer months, when melting and rainfall delivery are greatest (Figure 8). Such velocity 542 

increases have been interpreted as indicative of basal motion lubricated by subglacial drainage 543 

(Benn et al., 2017; Copland et al., 2009; Kääb, 2005; Kodama and Mae, 1976; Kraaijenbrink et al., 544 
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2016a; Kumar and Dobhal, 1997; Mayer et al., 2006; Quincey et al., 2009). Similar remote sensing 545 

studies of surging debris-covered glaciers, particularly in the Karakoram, have inferred the 546 

presence of subglacial water that enables rapid surface velocities during surge phases (Copland et 547 

al., 2009; Quincey et al., 2011; Steiner et al., 2018a), such as the maximum velocity of > 250 m a-1 548 

reported at South Skamri Glacier, Pakistan Karakoram (Copland et al., 2009). 549 

The existence of channelised subglacial drainage has been inferred from the presence of 550 

proglacial outlet streams at the terminus of debris-covered glaciers. During the melt season, these 551 

channels discharge large volumes of heavily debris-laden water, implying sediment entrainment 552 

during transport along the bed (Quincey et al., 2009). This transport pathway has also been 553 

inferred from comparisons of supraglacial with proglacial solute concentrations on Lirung Glacier, 554 

where high proglacial Ca2+ and SO4
2- concentrations indicated prolonged contact with reactive 555 

debris, inferred to occur during subglacial drainage (Bhatt et al., 2007). Similarly, a perennially 556 

active subglacial system on Dokriani Glacier was inferred to be connected with the englacial system 557 

on the basis of proglacial electrical conductivity measurements (Hasnain and Thayyen, 1994). 558 

 Variations in subglacial system efficiency have been inferred from studies focusing on 559 

proglacial streams. For example, the increasing efficiency and interconnection of the subglacial 560 

system of Gangotri Glacier, Garhwal Himalaya, was inferred from an increase in the net flux and 561 

size of subglacially eroded suspended particles through the melt season (Haritashya et al., 2010). 562 

On the same glacier, dye tracing experiments showed that the channelised subglacial drainage 563 

system became progressively more efficient with greater meltwater inputs through the melt 564 

season (Pottakkal et al., 2014). Dye tracing experiments have also demonstrated a transition from 565 

distributed to channelised subglacial drainage through the melt season, for example at both 566 

Dokriani Glacier and Hailuogou Glacier, Mt. Gongga, Tibet (Hasnain et al., 2001; Liu et al., 2018). 567 

On a diurnal scale, Kumar et al. (2009) found that the total ion concentration of proglacial 568 

meltwater at Gangotri Glacier increased from the afternoon onwards, interpreted as an enhanced 569 

subglacial component due to the englacial system developing through the day and transporting a 570 

greater proportion of supraglacial meltwater to the solute-rich glacier bed. Finally, substantial 571 

subglacial meltwater storage at debris-covered Lirung Glacier was inferred from its lower diurnal 572 

discharge variability relative to nearby debris-free Khimsung Glacier, Nepal Himalaya (Wilson et 573 

al., 2016). 574 
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 575 

Figure 8 – Surface velocity maps of Lirung Glacier, Nepal Himalaya, during summer (left) and winter 

(right), with three transverse velocity profiles (A-C) at the locations marked. From Kraaijenbrink et 

al. (2016b). 

4.2 Subglacial knowledge gaps 576 

Very little is known about the subglacial drainage of High Mountain Asian debris-covered glaciers, 577 

largely due to the difficulty in accessing these systems. Furthermore, many debris-covered glaciers 578 

in High Mountain Asia terminate in lakes (Section 5.1.1), which increases the likelihood of some 579 

form of subglacial drainage system but reduces the likelihood of that system being channelised. 580 

Such lakes also severely hamper direct access to any outflow streams that might be present. 581 

Assuming the existence of such conduits, it is entirely unknown whether subglacial networks flow 582 

directly into proglacial ponds at the bed, are routed to the surface upglacier and flow in 583 

supraglacially (similar to the pathway of some englacial drainage at Ngozumpa Glacier (Benn et al., 584 

2017)), or are partially or wholly lost to groundwater. Additionally, the existence of base-level 585 

englacial streams and a perched water table are highly likely to complicate the detection of, and 586 

distinction between, englacial and subglacial systems, at least approaching the terminus. For 587 

example, towards the terminus of Khumbu Glacier, it has been inferred that the high local base-588 

level results in the uprouting of the subglacial/deep englacial drainage system to the surface, yet, 589 

since the ice here is temperate, some meltwater would nonetheless be expected at the bed (K. E. 590 

Miles et al., 2018; Miles et al., 2019). However, basal ice temperatures and conditions for almost 591 

all other High Mountain Asian debris-covered glaciers are entirely unknown. 592 

Transitions between the englacial and subglacial system are important to understand, as 593 

are discovering and tracking lost meltwater components – lost potentially to groundwater, to 594 

short- or long-term storage within the glacier, or to evaporation from the terminal moraine. If 595 
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extensive subglacial drainage environments are discovered, the influence of the supraglacial debris 596 

cover on those systems should also be investigated. 597 

5. Proglacial hydrology 598 

5.1 Proglacial zone 599 

5.1.1 Proglacial lakes 600 

One of the most distinctive characteristics of the proglacial zone of High Mountain Asian debris-601 

covered glaciers is the frequent presence of a proglacial lake (Figure 9), which are far more 602 

common than at equivalent clean-ice glaciers. These lakes form by a continuation of the processes 603 

of glacier thinning and supraglacial pond growth (Section 2.1.2) facilitated by the deposition of 604 

sufficient debris by debris-covered glaciers to create high, arcuate terminal moraines. Here, 605 

perched supraglacial ponds expand both downwards, eventually cutting to base-level, and 606 

laterally, often eventually coalescing to produce one large lake above and over the terminus 607 

(Basnett et al., 2013; Kattelmann, 2003; Mertes et al., 2016; Röhl, 2008; Watanabe et al., 2009). 608 

Although less common, base-level lakes that penetrate the full glacier thickness can form farther 609 

upglacier and expand downglacier through stagnant terminus ice, for example Imja Tsho on Imja-610 

Lhotse Shar Glacier, Nepal Himalaya (Figure 9) (Watanabe et al., 2009). The exact location of such 611 

a proglacial lake may be determined by the location of shallow englacial conduits that provide pre-612 

existing lines of weakness as the perched ponds grow (Benn et al., 2017; Thompson et al., 2012). 613 

Proglacial lakes will therefore determine the hydrological base-level of the glacier, and are often 614 

dammed by the terminal moraine (Thompson et al., 2012). 615 

 616 

Figure 9 – Proglacial lake (Imja Tsho) with a frozen and snow-covered surface at Imja-Lhotse Shar 

Glacier, Nepal Himalaya. A) full length of Imja Tsho (~2.7 km in October 2018), looking upstream 

towards the calving front of Imja-Lhotse Shar Glacier. B) detached (stagnant) glacier ice that dams 

the lake. The black star and arrow in B) show the location and direction A) was taken in. Image 

credits: Katie Miles. 

The formation of moraine-dammed proglacial lakes represents a final stage in the surface 617 

lowering and overall mass loss of debris-covered glaciers. Benn et al. (2012) defined three stages 618 

in the development of debris-covered glaciers: in regime one, all parts of the glacier are 619 



23 
 

dynamically active; in regime two, surface lowering has begun and ice velocities decrease; in 620 

regime three, glaciers are stagnant and rapid recession may occur. The formation of a base-level 621 

lake indicates that a glacier has entered this third regime, and rapid recession may then occur 622 

through further expansion of that proglacial lake (Benn et al., 2012). A growing number of 623 

proglacial lakes of increasing size have been observed in recent decades across the Hindu Kush 624 

Himalaya (Gardelle et al., 2011; Haritashya et al., 2018b; Nie et al., 2017; Thompson et al., 2012). 625 

The pattern of proglacial lake formation varies across the region, with proglacial lake area in the 626 

western Himalaya decreasing 30–50% from 1990–2009 compared to an increase of 20–65% 627 

towards the east, where proglacial lakes are already more prevalent (Gardelle et al., 2011; 628 

Maharjan et al., 2018). This pattern at least partly results from greater glacier recession in the west 629 

over this period (Gardelle et al., 2011). 630 

Proglacial lakes expand through similar mechanisms to supraglacial ponds (i.e. subaqueous 631 

melting and subaerial ice face melting; Section 2.1.2) until they are limited by substrate. Lake 632 

expansion therefore enhances glacial mass loss and meltwater production while the lake is 633 

underlain or dammed by ice (Carrivick and Tweed, 2013; Röhl, 2008). Once calving is triggered, it 634 

becomes the dominant method of subsequent lake growth (Röhl, 2008; Thompson et al., 2012). 635 

Calving into a proglacial lake progresses from notch development and roof collapse to large-scale, 636 

full-height slab calving enabled by the lake deepening to the glacier bed (Kirkbride and Warren, 637 

1997; Thompson et al., 2012). The water depth may then be sufficient to trigger extending flow in 638 

the now-unsupported ice cliff, increasing flow velocities and weakening the ice through crevasse 639 

formation and dynamically induced thinning (King et al., 2019; Kirkbride and Warren, 1999; 640 

Thompson et al., 2012; Tsutaki et al., 2019). This can result in rapid and potentially unstable 641 

calving, substantially increasing glacier mass loss, as has been observed during several kilometres 642 

of such retreat at Tasman Glacier, New Zealand (Kirkbride and Warren, 1999) and modelled for 643 

lake- and land-terminating glaciers in the Bhutan Himalaya (Tsutaki et al., 2019). Upglacier 644 

expansion of the proglacial lake (Watanabe et al., 2009) may have implications for the glacier’s 645 

drainage system, such as by earlier interruption of meltwater routing (Carrivick and Tweed, 2013). 646 

Very large proglacial lakes can alter a glacier’s microclimate due to a lake’s lower albedo 647 

and higher thermal heat capacity relative to the surrounding ice and soil, thereby producing locally 648 

cooler summer air temperatures and warmer autumn temperatures (Carrivick and Tweed, 2013). 649 

This can slow local summer ice ablation and consequently reduce the amount of meltwater being 650 

produced and transported through the glacier, with implications for the development of englacial 651 

and subglacial drainage systems. If a moraine-dammed proglacial lake is present then the 652 

overwhelming majority of water transported through a debris-covered glacier is likely to pass 653 

through that lake (Benn et al., 2017). This has implications for drainage through the glacier and for 654 

the potential occurrence of glacial lake outburst floods (GLOFs). 655 

5.1.2 Proglacial streams 656 

Proglacial runoff from debris-covered glaciers can form a significant proportion of the discharge of 657 

large rivers downstream, particularly in High Mountain Asia: the Indus, Dudh Koshi, Ganges, and 658 

Brahmaputra rivers all stem from glacial meltwaters (Pritchard, 2019; Ragettli et al., 2015; Wilson 659 

et al., 2016). In particular, glacial runoff buffers both seasonal (Bolch et al., 2019; Pritchard, 2019) 660 
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and annual (Pohl et al., 2017) water shortages. Loss of glacier volume due to longer, warmer melt 661 

seasons and decreased snow accumulation could result in periods of much reduced water 662 

availability, greatly influencing downstream communities and ecology (Bolch et al., 2019; Pohl et 663 

al., 2017; Pritchard, 2019). 664 

 Proglacial discharge measurements, estimates, and models have been run across High 665 

Mountain Asia, such as on individual glaciers in Nepal (Braun et al., 1993; Fujita and Sakai, 2014; 666 

Ragettli et al., 2015; Rana et al., 1997; Savéan et al., 2015; Soncini et al., 2016; Tangborn and Rana, 667 

2000), Tibet (Kehrwald et al., 2008), the Tien Shan (Chen and Ding, 2009; Han et al., 2010; Sorg et 668 

al., 2012), India (Hasnain, 1999, 1996; Khan et al., 2017; Singh et al., 2005, 1995; Singh and 669 

Bengtsson, 2004; Thayyen and Gergan, 2010), and for multiple catchments and entire regions 670 

(Winiger et al., 2005). However, such records are relatively short: of the studies listed above, five 671 

measured discharge for a year or less; three have 2–3 years of measurements; and only one has 6 672 

years of measurements. The others use modelling to obtain estimates of proglacial discharge. 673 

The presence of surface debris can have a notable effect on a glacier’s proglacial discharge, 674 

resulting in a proglacial hydrograph that is different from that of a clean-ice glacier. While no such 675 

comparison has been made for a High Mountain Asian debris-covered glacier, an example is shown 676 

from the debris-covered Dome Glacier, Canadian Rockies (Figure 10) (Mattson, 2000). Here, 677 

discharge was muted both diurnally and through the ablation season compared to the 678 

neighbouring clean-ice Athabasca Glacier (Figure 10); variation in annual discharge volume from 679 

Dome Glacier between the two years was 1%, compared to 24% from Athabasca Glacier. This is 680 

due partly to the suppression of surface melt by a debris cover (Section 2.1.1), and partly to the 681 

lags that are induced as a result of the debris layer – the additional time to conduct heat through 682 

the debris and the warmer local air temperatures due to the warming debris introduces a delay. 683 

Thus, peak melt can occur up to several hours after the maximum radiation receipt at the debris 684 

surface (Carenzo et al., 2016; Conway and Rasmussen, 2000; Evatt et al., 2015), and an exceptional 685 

case has been recorded as being up to 24 hours later for debris layers > 0.85 m thick (Fyffe et al., 686 

2014). This lag in diurnal peak melt is thus reflected in the timing of the highest stream flow, 687 

producing a later and less pronounced peak in the diurnal pattern of a debris-covered glacier’s 688 

proglacial stream (Fyffe et al., 2019a, 2014). 689 
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  690 

Figure 10 – Hydrographs of proglacial discharge of the clean-ice Athabasca Glacier and the 

adjacent debris-covered Dome Glacier, Canadian Rockies, over the ablation months of July and 

August 1994 and 1995. Redrawn from Mattson (2000). 

Lags in proglacial discharge from debris-covered glaciers may also be caused by the 691 

temporary storage of water within the surface debris layer, for example, during rainfall events. 692 

This may influence subglacial and proglacial discharge by delaying and buffering water transfer at 693 

the surface, potentially affecting basal water pressures and minimising peaks in proglacial 694 

discharge (Brock et al., 2010). In the Himalaya, monsoon precipitation is thought to exert a 695 

significant control on proglacial discharge hydrographs at high rainfall intensities. For example, 696 

Thayyen et al. (2005) suggested such an intensity was > ~20 mm d-1, which occurred on 20% of 697 

rainfall days during four years of monsoon measurements on Dokriani Glacier. Early in the melt 698 

season, meltwater is also stored within the snowpack of debris-covered glaciers, providing a 699 

further delay in the transport of meltwater from the surface into the subsurface drainage system 700 

(Singh et al., 2006b). In the last two decades the amount of snowfall accumulation has decreased 701 

across the Himalaya, and is projected to decrease a further 20–40% by 2100 (Salerno et al., 2015; 702 

Smith and Bookhagen, 2018; Viste and Sorteberg, 2015); this buffer will thus be further reduced, 703 

influencing the future proglacial hydrograph pattern of debris-covered glaciers.  704 

Groundwater stored within high-elevation glacial catchments has been inferred to interact 705 

with proglacial (and subglacial) stream networks, affecting their discharge patterns due to 706 

additional water storage and subsequent release (Gremaud et al., 2009; Smart, 1996, 1988). For 707 

example, a ~45 day lag between precipitation and discharge was observed for 12 glacierised and 708 

non-glacierised Himalayan catchments, indicating storage of up to two-thirds of the river discharge 709 

in a groundwater aquifer system before the monsoon, greatly affecting the annual discharge 710 

pattern (Andermann et al., 2012c). This has similarly been shown by much reduced river 711 
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suspended sediment concentrations measured post-monsoon, having been diluted as 712 

groundwater begins to be released (Andermann et al., 2012b, 2012a). Comparable processes may 713 

occur beneath the glaciers themselves, for example, at Khumbu Glacier in the pre-monsoon 714 

season, where more meltwater entered the glacier’s subsurface drainage system than exited the 715 

glacier at the terminus (Miles et al., 2019). Indeed, in the Jade Dragon Snow Mountain region of 716 

southwest China, 29% of glacier meltwater was calculated to be stored in a karst aquifer (Zeng et 717 

al., 2015). Groundwater sinks of subglacial meltwater can therefore comprise a significant portion 718 

of the total glacial output, potentially resulting in underestimation of glacial ablation. 719 

A range of models has been used to predict future runoff from debris-covered glaciers using 720 

various future climatic scenarios for a single glacier basin (Ragettli et al., 2015; Singh et al., 2008, 721 

2006a; Zhang et al., 2007) and multiple glacier basins (Immerzeel et al., 2012; Lowe and Collins, 722 

2001) up to a regional scale (Rees and Collins, 2006; Shea and Immerzeel, 2016). Currently, a large 723 

proportion of debris-covered glaciers worldwide, particularly in the Himalaya, have negative mass 724 

balances (Bolch et al., 2012, 2011; Kääb et al., 2012; Scherler et al., 2011). A recently observed 725 

decline in Himalayan snowfall will contribute further to the decreasing mass of these glaciers by 726 

both reducing accumulation rates and exposing the glacier surface to atmospheric melting earlier 727 

in the melt season (Salerno et al., 2015). Glacier contributions to catchment discharge in many 728 

regions have been predicted to increase over the next few decades, but as the glaciers continue 729 

to shrink, peak water will be surpassed and this proportion will begin to reduce substantially due 730 

to the reduced volume of the remaining glaciers (Barnett et al., 2005; Bolch, 2017; Bolch et al., 731 

2012; Huss, 2011; Huss and Hock, 2018; Lutz et al., 2014). Shea and Immerzeel (2016) estimated 732 

that most basins will have declining glacier contributions to streamflow by 2100, and water 733 

shortages may then be a concern for many populated areas in the Karakoram, while reduced peak 734 

flows may represent a greater concern in the eastern Himalaya. 735 

5.2 Proglacial knowledge gaps 736 

Few glacial discharge monitoring stations have been in place for longer than a decade in High 737 

Mountain Asia, leaving current and future discharge volumes unknown for most debris-covered 738 

glaciers. The volume and temporal variability of potential glacial meltwater losses to groundwater, 739 

and whether these re-join the glacial system (subglacially, proglacially, or further downstream), 740 

are also poorly understood. 741 

 Projections of future changes in proglacial hydrology are hampered by the absence of 742 

accurate predictions of the future geometric development of High Mountain Asian debris-covered 743 

glaciers. For example, if surface lowering remains the dominant response to climate warming, 744 

glaciers may melt entirely and/or form large proglacial lakes that then dominate mass loss 745 

processes. Conversely, the inverted mass balance regime could result in a separation of stagnant, 746 

heavily debris-covered lower glacier tongues from the upper, less debris-covered regions, 747 

potentially providing ideal conditions for a base-level lake to form in between, dammed by the 748 

detached debris-covered ice.  749 
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6. Future research themes 750 

Based on the review above, we identify six hydrological research themes, including examples of 751 

appropriate techniques, that would contribute substantially to advancing our understanding of the 752 

hydrology of High Mountain Asian debris-covered glaciers.  753 

I. Elucidating glacier-wide water balance 754 

Given the importance of glaciers as a source of water in high mountain regions (Immerzeel et al., 755 

2020), more robust quantification of water inputs into, and outputs from, the glacier system is 756 

paramount. Detailed and temporally and spatially extensive hydrological field measurements are 757 

required to better constrain numerical model parameterisations. Water inputs should be 758 

simulated and examined independently of glacier-fed river discharge, with attention to process 759 

parameterisation to facilitate improvements in efforts to close the water balance. Water storage 760 

is also an important component of the water balance, discussed further in research theme IV 761 

below. 762 

 The limited measurement to date of precipitation across High Mountain Asia, particularly 763 

in terms of partitioned snow and rainfall and synoptic and seasonal-to-annual variations in 764 

precipitation gradient and rainfall fraction, should be augmented by establishing a network of 765 

robust automatic weather stations over a range of catchments, surface types, and elevations. 766 

Glacier surface elevation change should be measured simultaneously by remote sensing and 767 

ground-based methods – for example, by ultrasonic rangers – to calibrate and validate models of 768 

melt and mass balance. These approaches would also aid in determining the impact of 769 

anthropogenic black carbon aerosols and other light-absorbing impurities on albedo, supported 770 

by remote-sensing studies of surface characteristics. Precipitation gradients should be quantified 771 

further through dedicated accumulation measurements. 772 

 The retention of meltwater, for example by refreezing of meltwater within supraglacial 773 

debris, firn, crevasses, or the body of the glacier, requires better characterisation. Empirical data 774 

collected from snow pits and shallow ice cores would be sufficient to quantify such mass retention 775 

over short timescales, complemented by longer-term records derived from deeper coring or visual 776 

examination of layering present in borehole walls. In the accumulation area, these methods would 777 

provide the additional bonus of historical records of local accumulation. 778 

 The amount of water lost through evaporation and sublimation should be assessed through 779 

comprehensive studies of eddy covariance coupled with meteorological measurements. Future 780 

research should examine these processes not only from snow-covered areas, recently shown to 781 

be a key source of water loss (Stigter et al., 2018), but also over the accumulation and debris-782 

covered ablation areas and the terminal and lower lateral moraines, which may equally contribute 783 

to evaporation and sublimation losses. Quantifying these moisture fluxes may be possible either 784 

by direct field measurement or by remote sensing for longer timescales. 785 
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 Other research needs include quantifying losses to groundwater and better evaluating the 786 

role of debris in driving the observed hysteretic behaviour of downstream annual hydrographs. 787 

Hydrochemical and isotopic analyses may shed light on water sources and variations therein, while 788 

catchment-scale dye or gas tracing studies tied closely to continuous measurements of discharge 789 

at various locations on and beyond the glacier could help to define the volumes of water delivered 790 

to groundwater systems (and if so, the proportion that re-joins the proglacial stream farther 791 

downvalley). 792 

II. Understanding hydrological processes influencing glacier mass balance 793 

The efficiency of rainfall and meltwater routing from higher elevation locations should be 794 

evaluated due to its potential effect on glacier accumulation and mass balance by englacial 795 

melting. For example, heat fluxes driven by meltwater conveyance to the englacial and subglacial 796 

environments of debris-covered glaciers (i.e. cryo-hydrologic warming (Gilbert et al., 2020; Phillips 797 

et al., 2010)), could be explored using numerical models guided by field-based measurements of 798 

supraglacial water fluxes and temperatures, along with geophysical and/or borehole-based 799 

investigations of englacial temperature fields. Specific loci and timescales of meltwater routing, 800 

storage, and release should be determined. Englacial drainage pathways are of particular 801 

importance due to their strong association with the formation of supraglacial ice cliffs, which 802 

account for a disproportionate amount of surface melt at heavily debris-covered glaciers. 803 

Investigations should map current streams and monitor changes in surface topography and 804 

hydrology (for example, the collapse and surface exposure of shallow englacial systems) both 805 

remotely, using satellite images where streams are large enough, and in the field. The latter should 806 

be supplemented by dye tracing experiments to characterise the hydraulic properties of englacial 807 

systems. 808 

 There is a need for accurate knowledge of spatial variations in surface debris characteristics 809 

and thicknesses, and of meltwater located at the ice-debris interface, to improve models of surface 810 

vapour fluxes. Thus, meteorological stations are required to measure water content or relative 811 

humidity. Debris thickness maps and the existence of ponded and surface water could be 812 

constructed by refining algorithms from remotely sensed data (both thermal imagery and surface 813 

lowering) or on the basis of manual field measurements of ponds and high-frequency ground-814 

penetrating radar to identify water present at the interface between the supraglacial debris layer 815 

and the underlying ice. Future investigations of supraglacial pond expansion rates should focus on 816 

wide-scale systematic field-based bathymetry, pond-sediment stratigraphic assessment, and 817 

measurements of pond water and basal sediment temperatures at multiple depths (particularly to 818 

assess vertical heat transfer from warm supraglacial pond water to the base of the pond), 819 

combined with the development of numerical models of heat transfer by such mechanisms. 820 

III. Identifying the influence of drainage and meltwater storage on ice motion 821 

Meltwater present at the bed or the terminus of debris-covered glaciers can affect the velocity of 822 

both land- and lake-terminating glaciers; a better understanding and inclusion of subglacial 823 

hydrological processes into models of glacier dynamics will improve future simulations of ice flow 824 

and glacier evolution. Within subglacial hydrological processes, better quantification is needed of 825 
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the inputs to the system (i.e. coupling meteorological data with melt modelling), the volume of 826 

water present at the bed (for example by monitoring subglacial water pressure in deep borehole 827 

arrays), and the volumes of water lost from the system (i.e. by calculating the glacier’s water 828 

balance). 829 

 Ice motion should be separated into its constituent components (i.e. ice deformation and 830 

basal motion), with particular focus on measurements acquired during the melt season and on an 831 

individual glacier scale. Basal water pressure, and consequently glacier sliding, should be estimated 832 

through analysis of variations in glacier surface velocity obtained, for example through combining 833 

remote-sensing data with field-based GPS studies. The recently available and constantly growing 834 

archive of rapid-repeat, high-resolution optical and radar remotely sensed imagery will help future 835 

work to improve knowledge of seasonal velocities (e.g. Dehecq et al., 2019). Deeper ice velocities 836 

and strain can be recorded within boreholes, ideally extending to the glacier bed. Such boreholes 837 

can also allow measurements of the glacier thermal regime and bed substrate, while improved 838 

mapping of glacier bed topography across High Mountain Asia is necessary to constrain estimates 839 

of ice thicknesses. Finally, in order to assess the influence of calving from proglacial lakes, the 840 

above measurements should be collected in comparative studies of both lake- and land-841 

terminating High Mountain Asian glaciers. 842 

IV. Characterising seasonal changes in hydrology 843 

Targeted research is needed to measure seasonal changes in hydrological storage components, 844 

particularly those that are specific to debris-covered glaciers. Improved understanding of storage 845 

components is needed to represent the drainage system of debris-covered glaciers appropriately 846 

in hydrological models. For example, seasonal changes in the area and volume of perched 847 

supraglacial ponds could be achieved at the glacier scale using rapid-repeat optical satellite 848 

imagery to maximise likelihood of observation and/or by using high-resolution synthetic aperture 849 

radar satellite data, which are insensitive to cloud cover. Detailed examination of the water 850 

content of the supraglacial debris layer (including the seasonal thaw dynamics of the debris layer, 851 

influencing its hydraulic transmissivity) can be made using soil moisture sensors installed at 852 

multiple depth intervals, while through-debris transmissivity and snowpack storage/release could 853 

be assessed by dye tracing experiments. These processes will aide better understanding of the role 854 

of debris, snow, and firn in transmitting meltwater to supraglacial streams and the subsurface 855 

drainage system, including seasonal storage and release from subsurface reservoirs. 856 

 Process-based understanding of seasonal hydrological changes could also be improved by 857 

detailed field-based studies. Glacier drainage systems respond dynamically to the seasonal 858 

production of meltwater; this is clear at clean-ice glaciers where snowline retreat stimulates the 859 

progressive upglacier transition from inefficient to efficient drainage. Research is needed at High 860 

Mountain Asian debris-covered glaciers to evaluate whether distinctive seasonal dynamics can be 861 

explained by additional storage components or specific melt-generation patterns. These 862 

phenomena can be addressed through dye tracing, glaciospeleology or bulk proglacial meltwater 863 

analysis. Such studies would also result in a better general understanding of the nature and form 864 

of englacial and subglacial drainage at High Mountain Asian debris-covered glaciers. 865 
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 Finally, the seasonal structure and dynamics of debris-covered glacier hydrological systems 866 

should be understood in the context of projected future melt and discharge. An integrated effort 867 

to assess seasonal changes in debris-covered glacier hydrology should be coupled with melt season 868 

meteorological and ablation measurements, as well as development of a continuous discharge 869 

record through proglacial discharge monitoring stations. 870 

V. Evaluating hydrological hazards 871 

The growth in both number and size of supraglacial ponds is one of the clearest visual signs of 872 

debris-covered glacier decay. Future research should focus on predicting formation and growth of 873 

such ponds by combining glacier melt projections (e.g. Kraaijenbrink et al., 2017; Rounce et al., 874 

2020) with modelled glacier bed overdeepenings (e.g. Linsbauer et al., 2016). Moraine-impounded 875 

sites (such as where base-level terminal lakes have been observed to develop) are more complex; 876 

investigations of the drainage capacity (evidence of free-drainage as opposed to impoundment), 877 

combined with remotely sensed observations of expanding and coalescing supraglacial pond 878 

chains, may provide a suitable starting point. Improved understanding of supraglacial pond 879 

expansion rates, discussed in research theme II, is also crucial, while accurately modelling the 880 

longevity of ice cliffs could be improved with high-resolution digital elevation models (obtained, 881 

for example, through Structure-from-Motion) coupled with simple numerical melt modelling. 882 

 Assessments of how ‘dangerous’ a lake is (potential for a catastrophic GLOF occurring) 883 

often disagree (e.g. Haritashya et al., 2018a; Maharjan et al., 2018; Rounce et al., 2016) and, while 884 

recent events such as the 2015 Gorkha earthquake suggest that the terminal moraines of glacial 885 

lakes may be more stable than hitherto considered, large-scale remote observations cannot assess 886 

internal or small-scale superficial damage caused by such events (Byers et al., 2017; Kargel et al., 887 

2016). Such studies should be improved in terms of their sophistication, for example addressing a 888 

broader range of factors that contribute to the formation of a hazardous lake (e.g. Rounce et al., 889 

2016), many of which may be site specific. Traditional magnitude-frequency relationships may no 890 

longer be relevant as the current state of mountain environments is non-stationary and beyond 891 

historic precedence. Therefore, alternative forms of event prediction are needed, such as site-892 

specific hazard development depending on different event magnitudes. 893 

 Field-based measurements should be made on, and downstream of, individual proglacial 894 

lakes to determine potential hazards and the GLOF risk. Knowledge of moraine dam composition 895 

(including sediment type and the presence or absence of an ice core) and the existence of seepage 896 

or piping is needed, and could be addressed by radar, seismic studies, or drilling into moraines to 897 

characterise soil strength and composition. Flood hydrographs could be better constrained by 898 

geotechnical modelling to understand dam failure mechanisms. While predicting the timing of an 899 

outburst flood is nearly impossible, particularly those originating from englacial and subglacial 900 

sources, characterising subsurface drainage and routing and seasonal release of stored water may 901 

help to identify likely timing and locations of sudden outbursts (research theme IV). Cascading 902 

hydrological hazards, which may be triggered by very high-elevation and often hanging glaciers 903 

that are seldom studied, should also be considered. The thermal conditions and hydrology of these 904 
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glaciers should be investigated, for example, by surface ground-penetrating radar guided by 905 

borehole-based sensors, dye tracing and discharge monitoring. 906 

VI. Predicting future hydrological changes over short and long timescales 907 

Understanding the timescales over which debris-covered glaciers will lose mass, thereby 908 

influencing the amount of meltwater generated and subsequent hydrological processes, depends 909 

on developing a new generation of detailed glacier models that capture both the complex 910 

feedbacks between debris transport by ice and the processes affecting sub-debris ablation over 911 

timescales longer than a few decades (Rowan et al., 2015). Numerical model predictions need to 912 

integrate opposing processes on different scales, for example, encompassing both the glacier-scale 913 

‘debris-cover anomaly’ (the observed, but still unexplained, debris-covered glacier mass loss rates 914 

that are similar to those of clean-ice glaciers (Brun et al., 2019; Gardelle et al., 2012; Pellicciotti et 915 

al., 2015)) and the smaller-scale insulating effect of the debris. Field and remote-sensing data 916 

relating to mass balance and ice flow processes are required at the correct scale and resolution for 917 

use in numerical models of glacier mass change, parameterised with sufficient process-based 918 

understanding to predict how these controls will evolve over time. The inclusion of these small-919 

scale and complex processes within regional models (e.g. Kraaijenbrink et al., 2017) to improve 920 

the accuracy of large-scale mass-loss predictions should also be explored. 921 

As debris-covered glaciers get smaller, primarily by surface lowering, the debris cover will 922 

thicken and increase insulation, reducing ablation over a potentially greater area of the terminus. 923 

Debris-covered glaciers are therefore already larger and likely to decline slower than equivalent 924 

clean-ice glaciers; as a result, the meltwater of clean-ice glaciers will temporarily provide a 925 

relatively larger component of the annual hydrological budget as they lose mass preferentially. 926 

Robust dynamic glacier models are therefore needed to predict changing hydrographs and 927 

contributions to downstream water supplies, particularly as peak water passes. Supraglacial ponds 928 

play an important role in modulating the proglacial hydrograph and, in the long-term, may provide 929 

a natural water supply reservoir during periods of drought. However, sedimentation rates within 930 

ponds, and therefore their likely longevity, should be quantified by in situ hydrological stations. 931 

The acceleration of debris-covered glacier mass loss and decrease in glacial runoff as peak 932 

water passes are likely to lead to proglacial streams becoming proportionately more sediment-933 

laden. This may be enhanced during the melt season, particularly in regions of High Mountain Asia 934 

affected by heavy monsoon rains, which can enhance supraglacial debris erosion. Furthermore, 935 

ice within larger debris-covered glaciers is older than in smaller glaciers and will thus contain a 936 

longer legacy of environmental contaminants (e.g. Hodson, 2014; Li et al., 2017). Ultimately, this 937 

may result in more pollutants being delivered via proglacial streams to water supplies, particularly 938 

during the melt season. Discharge and water quality should therefore be monitored with 939 

hydrological monitoring stations on proglacial streams across High Mountain Asia. Combined with 940 

modelling efforts and improved hydrological understanding, this will allow mitigation strategies to 941 

be planned for the vast downstream populations that depend on that meltwater. 942 

 943 
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7. Summary 944 

In this review, we have summarised our understanding of the hydrology of High Mountain Asian 945 

debris-covered glaciers, identified numerous knowledge gaps, and suggested six themes for future 946 

research. While research has advanced substantially in recent years, there remain many questions 947 

about how the hydrological systems of debris-covered glaciers behave, and how this varies 948 

through both space and time. This limitation is largely due to the position of debris-covered 949 

glaciers in hard-to-reach areas because of logistical difficulties and/or political instability, an 950 

inability to gather observations beneath the surface due to the reduced performance of 951 

combustion-powered equipment at high elevation, and the persistence of challenging weather 952 

conditions for fieldwork through much of the year. Consequently, large uncertainty accompanies 953 

any projections of future water supply, a concern for tens of millions of people across several 954 

countries. Closing these knowledge gaps should thus prioritise generating information that best 955 

improves robust model-based projections of water supply from High Mountain Asian debris-956 

covered glaciers. There is an inevitable trade-off between the cost of collecting the necessary 957 

empirical data to close these gaps and the benefits returned in terms of improved model outputs. 958 

In light of these requirements and considerations, we conclude by identifying two principal 959 

priorities for scientists and two principal priorities for policymakers and funders. 960 

Our first priority for scientists is to improve understanding of patterns and rates of surface 961 

melting, particularly beneath debris layers of different properties and thicknesses on High 962 

Mountain Asian debris-covered glaciers. To this end, multi-variable analytical models should be 963 

developed to generate Østrem-type relationships applicable to a variety of debris properties (such 964 

as lithology, shape, grain-size texture, and variability therein) and energy-balance regimes (thereby 965 

factoring in influences such as elevation), extending the work of, for example Evatt et al. (2015). 966 

Our second priority for scientists is to improve understanding of the basal hydrology of debris-967 

covered glaciers across all of High Mountain Asia. Currently, little is known about the subglacial 968 

environment, including in many instances where the glacier base is, what the basal temperature 969 

field is, and whether subglacial drainage occurs at all. Yet, these properties are central to the 970 

quality of water supplied by such glaciers, as well as to their actual and modelled deformation 971 

rates and motion fields, which govern their modelled response to anticipated climate change. In 972 

order to maximise benefits relative to cost, field investigations of the subglacial environment could 973 

be undertaken at a limited number of sites to evaluate and guide larger-scale remote sensing and 974 

modelling studies. 975 

 Our first priority for policymakers and funders is to improve access for scientists to glaciers 976 

across High Mountain Asia. In this regard, we believe the provision of a small number of bases with 977 

effective transport infrastructure, open to international scientific teams, would facilitate a step 978 

change in research activity and output. Our second priority for policymakers and funders is to 979 

produce a better administrative environment for effective scientific collaboration. This should 980 

include, for example, the development of memorandums of understanding between countries to 981 

simplify regulations for research permitting and border crossing as part of a scientific research 982 

project. It should also involve adopting best practice in terms of ensuring a uniform approach to 983 

the quality control and homogeneity of data series, and archiving and sharing freely accessible 984 
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data. This would be in the interest of all involved parties, since maintaining a clean and reliable 985 

water supply is a fundamental part of building sustainable development (United Nations, 2015), 986 

which in High Mountain Asia can only be realised by improving understanding of future changes in 987 

the timing and magnitude of meltwater production from hitherto poorly studied debris-covered 988 

glaciers. 989 
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