81 research outputs found

    Clinico-pathological spectrum of testicular and paratesticular lesions: a retrospective study

    Get PDF
    Background: Both neoplastic and non neoplastic conditions affect the testis. Although non neoplastic testicular lesions are more common, still most of the studies were done on testicular neoplasms only. Hence the present study was undertaken to study histopathological spectrum of testicular and paratesticular lesions, their age distribution and clinical presentation.Methods: This is a retrospective study of 77 cases of orchidectomy specimens, testicular biopsies and paratesticular lesions received in the department from Jan 2015 to June 2018.Results: Non neoplastic testicular lesions were more common than neoplastic (90.1% Vs 9.8%) with majority in the second and third decade. Undescended testis comprised 46.1% of the total orchidectomy specimens followed by Torsion/Infarction testis (15.3%). None of the undescended testis showed tumour unlike western countries. Majority of patients presented with empty scrotum (31.16%) and testicular/scrotal swelling (18.11%). Only 5 cases of testicular neoplasm were diagnosed during the study period amounting to only 1.42 cases per year. All were germ cell tumours (4 classic seminoma and 1 yolk sac tumour).Conclusions: Non neoplastic testicular lesions were more common than neoplastic lesions. Complete neonatal examination for testicular descent should be mandatory to avoid late presentations and future malignancies. Germ cell tumours formed the bulk of testicular tumours

    Rapid and simple DNA extraction protocol from goat rumen digesta for metagenomic analysis

    Get PDF
    Abstract: In contrast to the traditional culturing techniques and microscopy that have led to the identification and characterization of only about 15-20 % of the rumen microbes till date, nucleic acid-based molecular approaches are rapid, reproducible, and allow both the qualitative and quantitative assessment of microbial diversity. The aim of this study was to develop a simple, rapid and effective extraction protocol for the recovery of high-molecular-weight and cloneable metagenomic DNA (mDNA) from goat rumen contents. An efficient method was devised to isolate highmolecular-weight mDNA (>23kb) that was pure and cloneable after isolation in a relatively short period (3.5 h). This is the first report wherein purification of isolated mDNA could be passed. The purity and cloneability of mDNA was found to be possible with the successful restriction digestion, 16S rDNA PCR amplification of the isolated mDNA and mDNA library construction.The screening of 1600 clones from the metagenomic library revealed one clone with adistinct hydrolytic activity on carboxymethyl cellulose (CMC) agar suggesting its endoglucanase activity. Agarose gel electrophoresis showed aDNA insert of ~1.5kb size on digestion with BamH1. The metagenomic clones offer a prodigious non-conventional means to explore the genetically untapped resources from nature

    Experimental strategy of animal trial for the approval of anti-diabetic agents prior to their use in pre-human clinical trials

    Get PDF
    Although several naturally available drugs have been historically used for the treatment of diabetes mellitus throughout the world, few of them have been validated by scientific criteria. Before approval of any drug developed it should pass through animal trial prior to clinical human trial, which should followed by some standard ethical rules. Recently, a large diversity of animal models have been developed to better understand the pathogenesis of diabetes mellitus, and new drugs have been introduced in the market to treat this autoimmune disease. In the present article, we demonstrated some standard handling procedure of animal trial for the approval of anti-diabetic drug, which could be helpful for both academics and industrial scientific community to conduct the animal experiments. This research also contributes in the field of ethnopharmacology to design new strategies for the development of novel drugs to treat this serious condition of diabetes mellitus that constitutes a global public health. Video Clip of Methodology:  Handling and caring of mice: 2 min 30 sec   Full Screen   Alternate Inducing diabetes in mice and observing blood glucose level: 1 min 47 sec   Full Screen   Alternate Drug administration and observation of blood glucose level: 2 min 11 sec   Full Screen   Alternat

    Morphological study of the gastrointestinal tract of the snow trout, Schizothorax esocinus (Actinopterygii: Cypriniformes)

    Get PDF
    The present study aimed to investigate the macroscopic structure of the gastrointestinal tract (GIT) of Schizothorax esocinus Heckel, 1838. The surface architecture of the buccopharynx, oesophagus and the entire intestinal tract of S. esocinus has been examined under scanning electron microscope (SEM) after fixing in 2.5% glutaraldehyde buffered with 0.1 M sodium cacodylate at pH 7.3 for 18–48 hours and post-fixation for two hours at room temperature in 1% osmium tetra oxide buffered at pH 7.3 with 0.1 M cacodylate. The mucosal surface of buccopharynx, esophagus, intestinal bulb, and intestine reveal prominent longitudinal major or primary mucosal folds which are further subdivided into the series of irregular and well-circumscribed folds called minor or secondary folds. However, in the intestinal bulb and intestine, the longitudinal major or primary folds themselves form wavy or zigzagging patterns along the mucosal surface. The fine structure of the surface epithelium further shows that the apical surfaces of the epithelial cells are ped with finger-print like microridges, arranged in various patterns and regularly spaced. The rectal mucosa, on the other hand, displays a highly irregular type of major mucosal folds. The separation can’t be seen between major mucosal folds. A thin film of mucous spread over the mucosal folds and the numerous pores through which mucous cells release their content has also been noted along the rectal mucosa. This investigation suggests the possible role of different digestive organs in relation to feeding, digestion, storage, absorption, and various other physiological processes, thereby providing a knowledge necessary to the understanding of pathological or physiological alterations in both aquaculture and natural environment

    Molecular generation and characterization of an efficient recombinant vaccine for avian influenza A/H5N8 in Saudi Arabia

    Get PDF
    Purpose: To characterize a highly pathogenic avian influenza (HPAI) H5N8 for engineering recombinant 6-+ 2 vaccine strain based on reverse genetic technology. Methods: A total of 135 swab samples from various birds were collected from different parts of Saudi Arabia as part of an influenza surveillance activity. The samples were checked for influenza virus infection using reverse transcriptase-polymerase chain reaction (RT-PCR). Furthermore, Avian influenza H5N8 (A/chicken/KSA/1-NRC/2018), was used for the generation of H5N8 vaccine strain. The vaccine was tested on specific pathogen-free (SPF) chicken purchased from a local market. Results: The results indicate that the candidate vaccine (rgH5N8/KSA) induced specific neutralizing antibodies in chicken, and thereby protected the chickens from subsequent infections of H5N8. Conclusion: The study reinforces the development of a vaccine against avian influenza H5N8 virus isolated in Saudi Arabia, suggesting its possible application against the influenza virus associated with bird fl

    Exopolysaccharide and lactic acid bacteria: Perception, functionality and prospects

    Get PDF
    Lactic acid bacteria exhibit the most effective potential to divert significant amount of fermentable sugars towards the biosynthesis of functional exopolysaccharide. Exopolysaccharides from lactic acid bacteria are receiving a renewed interest due to the claims of human health benefits. This review provides an update on multiple uses and production of exopolysaccharides with major emphasis on their chemical properties, characterization, and some other molecular strategies adopted for their genetics and biological tailoring to better understand the process of exopolysaccharide production along with their antiviral efficacy with multiple modes of action. Additionally, microbiological, biochemical, nutritional and biotechnological aspects of exopolysaccharide production have also been discussed. Moreover, appro-priate suggestions have been made on lactic acid bacteria improvements, leading to enhanced production with advanced modification and production process that may contribute to the economic soundness of applications in food and pharmacological industries with this promising group of biomolecules.

    The Acinetobacter baumannii website (Ab-web): a multidisciplinary knowledge hub, communication platform, and workspace

    Get PDF
    Acinetobacter baumannii is a Gram-negative bacterium increasingly implicated in hospital-acquired infections and outbreaks. Effective prevention and control of such infections are commonly challenged by the frequent emergence of multidrug-resistant strains. Here we introduce Ab-web (https://www.acinetobacterbaumannii.no), the first online platform for sharing expertise on A. baumannii. Ab-web is a species-centric knowledge hub, initially with ten articles organized into two main sections, ‘Overview’ and ‘Topics’, and three themes, ‘epidemiology’, ‘antibiotic resistance’, and ‘virulence’. The ‘workspace’ section provides a spot for colleagues to collaborate, build, and manage joint projects. Ab-web is a community-driven initiative amenable to constructive feedback and new ideas

    Evaluation of Lactiplantibacillus plantarum KAU007 against Low-Pathogenic Avian Influenza Virus (H9N2)

    No full text
    Avian influenza A viruses (AIVs) pose a persistent threat to humans owing to their reassortment and antigenic drift properties. Among them is H9N2, a low-pathogenic avian influenza virus first discovered in the non-human host and later found infective to humans with huge pandemic potential. In recent years, antiviral resistance has become an increasing threat to public health. Additionally, vaccination against AIVs is becoming increasingly challenging with little success due to antigenic drift. This has resulted in a growing demand for products that can replace the presently in-use medications and the development of innovative antiviral therapies. In this study, we systematically investigate the antiviral potential of lactic acid bacteria against H9N2. Bacteria that produce lactic acid are commonly used in food processing. In addition, these bacteria are considered more affordable, effective, and safe “nutraceuticals” than other alternative medicines. We tested Lactiplantibacillus plantarum KAU007 against the low-pathogenic avian influenza virus (H9N2). As confirmed by the hemagglutination assay, KAU007 showed potent antiviral activity against H9N2 and vigorous antioxidant activity. The CFCS showed a dose-dependent reduction in the levels of IL-6 and IFN-γ. Thus, KAU007 might be considered a potential H9N2 target-based probiotic

    Triazole Derivatives Target 14α–Demethylase (LDM) Enzyme in Candida albicans Causing Ergosterol Biosynthesis Inhibition

    No full text
    Candida albicans is the most dominant and prevalent cause of fungal infections in humans. Azoles are considered as first-line drugs for the treatment of these infections. However, their prolonged and insistent use has led to multidrug resistance and treatment failures. To overcome this, modification or derivatization of the azole ring has led to the development of new and effective antifungal molecules. In a previous study, we reported on the development of new triazole-based molecules as potential antifungal agents against Candida auris. In this study, the most potent molecules from the previous study were docked and simulated with lanosterol 14-alpha demethylase enzyme. These compounds were further evaluated for in vitro susceptibility testing against C. albicans. In silico results revealed favorable structural dynamics of the compounds, implying that the compounds would be able to effectively bind to the target enzyme, which was further manifested by the strong interaction of the test compounds with the amino acid residues of the target enzyme. In vitro studies targeting quantification of ergosterol content revealed that pta1 was the most active compound and inhibited ergosterol production by >90% in both drug-susceptible and resistant C. albicans isolates. Furthermore, RT-qPCR results revealed downregulation of ERG11 gene when C. albicans cells were treated with the test compound, which aligns with the decreased ergosterol content. In addition, the active triazole derivatives were also found to be potent inhibitors of biofilm formation. Both in silico and in vitro results indicate that these triazole derivatives have the potential to be taken to the next level of antifungal drug development

    Myricetin Abrogates Cisplatin-Induced Oxidative Stress, Inflammatory Response, and Goblet Cell Disintegration in Colon of Wistar Rats

    No full text
    Cisplatin [cis-diamminedichloroplatinum II] is an extensively prescribed drug in cancer chemotherapy; it is also useful for the treatment of diverse types of malignancies. Conversely, cisplatin is associated with a range of side effects such as nephrotoxicity, hepatotoxicity, gastrointestinal toxicity, and so on. Myricetin (3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-4chromenone) is a very common natural flavonoid found in fruits, tea, and plants. It has been found to have high-value pharmacological properties and strong health benefits. To examine the role of myricetin in colon toxicity induced by cisplatin, we conducted a concurrent prophylactic study in experimental animals that were treated orally with myricetin for 14 days at two doses—25 and 50 mg/kg of body weight. On the 14th day, a single intraperitoneal injection of cisplatin (7.5 mg/kg body weight) was administered in all groups except control. The effects of myricetin in cisplatin-induced toxicity in the colon were assessed in terms of antioxidant status, phase-II detoxification enzymes, the level of inflammatory markers, and goblet cell disintegration. Myricetin was found to restore the level of all the antioxidant enzymes analyzed in the study. In addition, the compound ameliorated cisplatin-induced lipid peroxidation, increase in xanthine oxidase activity, and phase-II detoxifying enzyme activity. Myricetin also attenuated deteriorative effects induced by cisplatin by regulating the level of molecular markers of inflammation (NF-κB, Nrf-2, IL-6, and TNF-α), restoring Nrf-2 levels, and controlling goblet cell disintegration. The current study reinforces the conclusion that myricetin exerts protection in colon toxicity via up-regulation of inflammatory markers, improving anti-oxidant status, and protecting tissue damage
    • …
    corecore