14 research outputs found
The sex hormone system in carriers of BRCA1/2 mutations: A case-control study
Background: Penetrance for breast cancer, ovarian cancer, or both in carriers of BRCA1/BRCA2 mutations is disproportionately high. Sex hormone dysregulation and altered end-organ hormone sensitivity might explain this organ-specific penetrance. We sought to identify differences in hormone regulation between carriers of BRCA1/2 and women who are negative for BRCA1/2 mutations. Methods: We assessed endometrial thickness for each menstrual cycle day (as an index of hormone regulation) in 393 scans from 228 women in the UK Familial Ovarian Cancer Screening Study (UK FOCSS) known to carry either mutation and 1573 scans from 754 women known to be negative for the mutations. To quantify differences in endometrial thickness we focused on days 10-14 and days 21-26, and calculated the area under the curve. We then compared serum oestradiol and progesterone titres during these days of the menstrual cycle in the same groups. Follicular and luteal oestradiol and progesterone serum titres were grouped into quartiles and odds ratios were calculated with logistic regression. Findings: Follicular phase endometrial thickness of carriers of the mutations adjusted for age and day of the menstrual cycle was higher (odds ratio [OR] 1·11, 95% CI 1·03-1·20; p=0·0063) and luteal phase endometrial thickness lower (0·90, 0·83-0·98; p=0·027) than for women negative for the mutations. Median luteal phase titres of progesterone were 121% higher (p=0·00037) in carriers than in women negative for the mutations, and for oestradiol were 33% higher (p=0·007)-ie, 59% of carriers had concentrations of serum progesterone that would have been in the top quartile of concentrations in the control group (OR 8·0, 95% CI 2·1-52·57; p=0·008). Interpretation: Carriers of BRCA1/BRCA2 mutations are exposed to higher titres of oestradiol and progesterone-known risk-factors for breast cancer. Higher titres of oestradiol in carriers are compatible with this hormone having a role in ovarian carcinogenesis in such women. Our findings could not be explained by differential contraceptive pill use. Funding: Eve Appeal, European Union, Cancer Research UK, and US National Institutes of Health. © 2013 Widschwendter et al. Open Access article distributed under the terms of CC BY
Contribution of Germline Mutations in the RAD51B, RAD51C, and RAD51D Genes to Ovarian Cancer in the Population
PURPOSE: The aim of this study was to estimate the contribution of deleterious mutations in the RAD51B, RAD51C, and RAD51D genes to invasive epithelial ovarian cancer (EOC) in the population and in a screening trial of individuals at high risk of ovarian cancer. PATIENTS AND METHODS: The coding sequence and splice site boundaries of the three RAD51 genes were sequenced and analyzed in germline DNA from a case-control study of 3,429 patients with invasive EOC and 2,772 controls as well as in 2,000 unaffected women who were BRCA1/BRCA2 negative from the United Kingdom Familial Ovarian Cancer Screening Study (UK_FOCSS) after quality-control analysis. RESULTS: In the case-control study, we identified predicted deleterious mutations in 28 EOC cases (0.82%) compared with three controls (0.11%; P < .001). Mutations in EOC cases were more frequent in RAD51C (14 occurrences, 0.41%) and RAD51D (12 occurrences, 0.35%) than in RAD51B (two occurrences, 0.06%). RAD51C mutations were associated with an odds ratio of 5.2 (95% CI, 1.1 to 24; P = .035), and RAD51D mutations conferred an odds ratio of 12 (95% CI, 1.5 to 90; P = .019). We identified 13 RAD51 mutations (0.65%) in unaffected UK_FOCSS participants (RAD51C, n = 7; RAD51D, n = 5; and RAD51B, n = 1), which was a significantly greater rate than in controls (P < .001); furthermore, RAD51 mutation carriers were more likely than noncarriers to have a family history of ovarian cancer (P < .001). CONCLUSION: These results confirm that RAD51C and RAD51D are moderate ovarian cancer susceptibility genes and suggest that they confer levels of risk of EOC that may warrant their use alongside BRCA1 and BRCA2 in routine clinical genetic testing
Germline whole exome sequencing and large-scale replication identifies FANCM as a likely high grade serous ovarian cancer susceptibility gene
We analyzed whole exome sequencing data in germline DNA from 412 high grade serous ovarian cancer (HGSOC) cases from The Cancer Genome Atlas Project and identified 5,517 genes harboring a predicted deleterious germline coding mutation in at least one HGSOC case. Gene-set enrichment analysis showed enrichment for genes involved in DNA repair (p = 1.8x10(-3)). Twelve DNA repair genes - APEX1, APLF, ATX, EME1, FANCL, FANCM, MAD2L2, PARP2, PARP3, POLN, RAD54L and SMUG1 - were prioritized for targeted sequencing in up to 3,107 HGSOC cases, 1,491 cases of other epithelial ovarian cancer (EOC) subtypes and 3,368 unaffected controls of European origin. We estimated mutation prevalence for each gene and tested for associations with disease risk. Mutations were identified in both cases and controls in all genes except MAD2L2, where we found no evidence of mutations in controls. In FANCM we observed a higher mutation frequency in HGSOC cases compared to controls (29/3,107 cases, 0.96 percent; 13/3,368 controls, 0.38 percent; P = 0.008) with little evidence for association with other subtypes (6/1,491, 0.40 percent; P = 0.82). The relative risk of HGSOC associated with deleterious FANCM mutations was estimated to be 2.5 (95% CI 1.3 - 5.0; P = 0.006). In summary, whole exome sequencing of EOC cases with large-scale replication in case-control studies has identified FANCM as a likely novel susceptibility gene for HGSOC, with mutations associated with a moderate increase in risk. These data may have clinical implications for risk prediction and prevention approaches for high-grade serous ovarian cancer in the future and a significant impact on reducing disease mortality
Prognostic gene expression signature for high-grade serous ovarian cancer.
BACKGROUND: Median overall survival (OS) for women with high-grade serous ovarian cancer (HGSOC) is ∼4 years, yet survival varies widely between patients. There are no well-established, gene expression signatures associated with prognosis. The aim of this study was to develop a robust prognostic signature for OS in patients with HGSOC. PATIENTS AND METHODS: Expression of 513 genes, selected from a meta-analysis of 1455 tumours and other candidates, was measured using NanoString technology from formalin-fixed paraffin-embedded tumour tissue collected from 3769 women with HGSOC from multiple studies. Elastic net regularization for survival analysis was applied to develop a prognostic model for 5-year OS, trained on 2702 tumours from 15 studies and evaluated on an independent set of 1067 tumours from six studies. RESULTS: Expression levels of 276 genes were associated with OS (false discovery rate < 0.05) in covariate-adjusted single-gene analyses. The top five genes were TAP1, ZFHX4, CXCL9, FBN1 and PTGER3 (P < 0.001). The best performing prognostic signature included 101 genes enriched in pathways with treatment implications. Each gain of one standard deviation in the gene expression score conferred a greater than twofold increase in risk of death [hazard ratio (HR) 2.35, 95% confidence interval (CI) 2.02-2.71; P < 0.001]. Median survival [HR (95% CI)] by gene expression score quintile was 9.5 (8.3 to -), 5.4 (4.6-7.0), 3.8 (3.3-4.6), 3.2 (2.9-3.7) and 2.3 (2.1-2.6) years. CONCLUSION: The OTTA-SPOT (Ovarian Tumor Tissue Analysis consortium - Stratified Prognosis of Ovarian Tumours) gene expression signature may improve risk stratification in clinical trials by identifying patients who are least likely to achieve 5-year survival. The identified novel genes associated with the outcome may also yield opportunities for the development of targeted therapeutic approaches
Development and Validation of the Gene Expression Predictor of High-grade Serous Ovarian Carcinoma Molecular SubTYPE (PrOTYPE)
PURPOSE: Gene-expression-based molecular subtypes of high-grade serous tubo-ovarian cancer (HGSOC), demonstrated across multiple studies, may provide improved stratification for molecularly targeted trials. However, evaluation of clinical utility has been hindered by non-standardized methods which are not applicable in a clinical setting. We sought to generate a clinical-grade minimal gene-set assay for classification of individual tumor specimens into HGSOC subtypes and confirm previously reported subtype-associated features. EXPERIMENTAL DESIGN: Adopting two independent approaches, we derived and internally validated algorithms for subtype prediction using published gene-expression data from 1650 tumors. We applied resulting models to NanoString data on 3829 HGSOCs from the Ovarian Tumor Tissue Analysis Consortium. We further developed, confirmed, and validated a reduced, minimal gene-set predictor, with methods suitable for a single patient setting. RESULTS: Gene-expression data was used to derive the Predictor of high-grade-serous Ovarian carcinoma molecular subTYPE (PrOTYPE) assay. We established a de facto standard as a consensus of two parallel approaches. PrOTYPE subtypes are significantly associated with age, stage, residual disease, tumor infiltrating lymphocytes, and outcome. The locked-down clinical-grade PrOTYPE test includes a model with 55 genes that predicted gene-expression subtype with >95% accuracy that was maintained in all analytical and biological validations. CONCLUSIONS: We validated the PrOTYPE assay following the Institute of Medicine guidelines for the development of omics-based tests. This fully defined and locked-down clinical-grade assay will enable trial design with molecular subtype stratification and allow for objective assessment of the predictive value of HGSOC molecular subtypes in precision medicine applications
Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women With Ovarian Cancer
BACKGROUND: Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, responsible for 13 000 deaths per
year in the United States. Risk prediction based on identifying germline mutations in ovarian cancer susceptibility genes
could have a clinically significant impact on reducing disease mortality.
METHODS: Next generation sequencing was used to identify germline mutations in the coding regions of four candidate
susceptibility genes—BRIP1, BARD1, PALB2 and NBN—in 3236 invasive EOC case patients and 3431 control patients of
European origin, and in 2000 unaffected high-risk women from a clinical screening trial of ovarian cancer (UKFOCSS). For
each gene, we estimated the prevalence and EOC risks and evaluated associations between germline variant status and
clinical and epidemiological risk factor information. All statistical tests were two-sided.
RESULTS: We found an increased frequency of deleterious mutations in BRIP1 in case patients (0.9%) and in the UKFOCSS
participants (0.6%) compared with control patients (0.09%) (P = 1 x 10–4 and 8 x 10–4, respectively), but no differences for
BARD1 (P = .39), NBN1 (P = .61), or PALB2 (P = .08). There was also a difference in the frequency of rare missense variants in
BRIP1 between case patients and control patients (P = 5.5 x 10–4). The relative risks associated with BRIP1 mutations were
11.22 for invasive EOC (95% confidence interval [CI] = 3.22 to 34.10, P = 1 x 10–4) and 14.09 for high-grade serous disease
(95% CI = 4.04 to 45.02, P = 2 x 10–5). Segregation analysis in families estimated the average relative risks in BRIP1 mutation
carriers compared with the general population to be 3.41 (95% CI = 2.12 to 5.54, P = 7×10–7).
CONCLUSIONS: Deleterious germline mutations in BRIP1 are associated with a moderate increase in EOC risk. These data
have clinical implications for risk prediction and prevention approaches for ovarian cancer and emphasize the critical need
for risk estimates based on very large sample sizes before genes of moderate penetrance have clinical utility in cancer
prevention
Recommended from our members
A combination of the immunohistochemical markers CK7 and SATB2 is highly sensitive and specific for distinguishing primary ovarian mucinous tumors from colorectal and appendiceal metastases
This study is supported by research funds from Cancer Research Society of Canada (19319). NSM is supported by the NSW Ministry of Health and UNSW Sydney under the NSW Health PhD Scholarship Program, and the Translational Cancer Research Network, a translational cancer research center program funded by the Cancer Institute NSW. The Gynaecological Oncology Biobank at Westmead was funded by Cancer Institute NSW (12/RIG/1–17 and 15/RIG/1–16) and the National Health and Medical Research Council of Australia (ID310670, ID628903). FM is funded by University of Pittsburgh School of Medicine Dean's Faculty Advancement Award. The HOPE study is funded by: US National Cancer Institute (K07-CA80668, P50-CA159981, R01CA095023), US Army Medical Research and Materiel Command (DAMD17–02–1–0669) and NIH/National Center for Research Resources/General Clinical Research Center (MO1- RR000056). KS is funded by the Swedish Cancer foundation. The Generations Study thank Breast Cancer Now, the Institute of Cancer Research and Ovarian Cancer Action for support and funding. The ICR acknowledge NHS funding to the NIHR Biomedical Research Centre. Tissue samples for GER were provided by the tissue bank of the National Center for Tumor Diseases (NCT, Heidelberg, Germany) in accordance with the regulations of the tissue bank and the approval of the ethics committee of the University of Heidelberg. The Health Science Alliance (HSA) Biobank acknowledges the UNSW Biorepository, UNSW Sydney, Australia. We thank Shuhong Liu, Young Ou, and Deon Richards for immunohistochemical stains, and Thomas Kryton, BFA, digital imaging specialist for Alberta Public Lab for creating the figures. We especially thank all the study participants, health care staff and data providers internationally who have made this research possible
Evidence for a time-dependent association between FOLR1 expression and survival from ovarian carcinoma: implications for clinical testing. An Ovarian Tumour Tissue Analysis consortium study
BACKGROUND: Folate receptor 1 (FOLR1) is expressed in the majority of ovarian carcinomas (OvCa), making it an attractive target for therapy. However, clinical trials testing anti-FOLR1 therapies in OvCa show mixed results and require better understanding of the prognostic relevance of FOLR1 expression. We conducted a large study evaluating FOLR1 expression with survival in different histological types of OvCa. METHODS: Tissue microarrays composed of tumour samples from 2801 patients in the Ovarian Tumour Tissue Analysis (OTTA) consortium were assessed for FOLR1 expression by centralised immunohistochemistry. We estimated associations for overall (OS) and progression-free (PFS) survival using adjusted Cox regression models. High-grade serous ovarian carcinomas (HGSC) from The Cancer Genome Atlas (TCGA) were evaluated independently for association between FOLR1 mRNA upregulation and survival. RESULTS: FOLR1 expression ranged from 76% in HGSC to 11% in mucinous carcinomas in OTTA. For HGSC, the association between FOLR1 expression and OS changed significantly during the years following diagnosis in OTTA (Pinteraction=0.01, N=1422) and TCGA (Pinteraction=0.01, N=485). In OTTA, particularly for FIGO stage I/II tumours, patients with FOLR1-positive HGSC showed increased OS during the first 2 years only (hazard ratio=0.44, 95% confidence interval=0.20-0.96) and patients with FOLR1-positive clear cell carcinomas (CCC) showed decreased PFS independent of follow-up time (HR=1.89, 95% CI=1.10-3.25, N=259). In TCGA, FOLR1 mRNA upregulation in HGSC was also associated with increased OS during the first 2 years following diagnosis irrespective of tumour stage (HR: 0.48, 95% CI: 0.25-0.94). CONCLUSIONS: FOLR1-positive HGSC tumours were associated with an increased OS in the first 2 years following diagnosis. Patients with FOLR1-negative, poor prognosis HGSC would be unlikely to benefit from anti-FOLR1 therapies. In contrast, a decreased PFS interval was observed for FOLR1-positive CCC. The clinical efficacy of FOLR1-targeted interventions should therefore be evaluated according to histology, stage and time following diagnosis
MyD88 and TLR4 Expression in Epithelial Ovarian Cancer
OBJECTIVE: To evaluate myeloid differentiation primary response gene 88 (MyD88) and Toll-like receptor 4 (TLR4) expression in relation to clinical features of epithelial ovarian cancer, histologic subtypes, and overall survival. PATIENTS AND METHODS: We conducted centralized immunohistochemical staining, semi-quantitative scoring, and survival analysis in 5263 patients participating in the Ovarian Tumor Tissue Analysis consortium. Patients were diagnosed between January 1, 1978, and December 31, 2014, including 2865 high-grade serous ovarian carcinomas (HGSOCs), with more than 12,000 person-years of follow-up time. Tissue microarrays were stained for MyD88 and TLR4, and staining intensity was classified using a 2-tiered system for each marker (weak vs strong). RESULTS: Expression of MyD88 and TLR4 was similar in all histotypes except clear cell ovarian cancer, which showed reduced expression compared with other histotypes (P<.001 for both). In HGSOC, strong MyD88 expression was modestly associated with shortened overall survival (hazard ratio [HR], 1.13; 95% CI, 1.01-1.26; P=.04) but was also associated with advanced stage (P<.001). The expression of TLR4 was not associated with survival. In low-grade serous ovarian cancer (LGSOC), strong expression of both MyD88 and TLR4 was associated with favorable survival (HR [95% CI], 0.49 [0.29-0.84] and 0.44 [0.21-0.89], respectively; P=.009 and P=.02, respectively). CONCLUSION: Results are consistent with an association between strong MyD88 staining and advanced stage and poorer survival in HGSOC and demonstrate correlation between strong MyD88 and TLR4 staining and improved survival in LGSOC, highlighting the biological differences between the 2 serous histotypes
A combination of the immunohistochemical markers CK7 and SATB2 is highly sensitive and specific for distinguishing primary ovarian mucinous tumors from colorectal and appendiceal metastases
Primary ovarian mucinous tumors can be difficult to distinguish from metastatic gastrointestinal neoplasms by histology alone. The expected immunoprofile of a suspected metastatic lower gastrointestinal tumor is CK7−/CK20+/CDX2+/PAX8−. This study assesses the addition of a novel marker SATB2, to improve the diagnostic algorithm. A test cohort included 155 ovarian mucinous tumors (105 carcinomas and 50 borderline tumors) and 230 primary lower gastrointestinal neoplasms (123 colorectal adenocarcinomas and 107 appendiceal neoplasms). All cases were assessed for SATB2, PAX8 CK7, CK20, and CDX2 expression on tissue microarrays. Expression was scored in a 3-tier system as absent, focal (1–50% of tumor cells) and diffuse ( >50% of tumor cells) and then categorized into either absent/present or nondiffuse/diffuse. SATB2 and PAX8 expression was further evaluated in ovarian tumors from an international cohort of 2876 patients (expansion cohort, including 159 mucinous carcinomas and 46 borderline mucinous tumors). The highest accuracy of an individual marker in distinguishing lower gastrointestinal from ovarian mucinous tumors was CK7 (91.7%, nondiffuse/diffuse cut-off) followed by SATB2 (88.8%, present/absent cut-off). The most effective combination was CK7 and SATB2 with accuracy of 95.3% using the 3-tier interpretation, absent/focal/diffuse. This combination outperformed the standard clinical set of CK7, CK20 and CDX2 (87.5%). Re-evaluation of outlier cases confirmed ovarian origin for all but one case. The accuracy of SATB2 was confirmed in the expansion cohort (91.5%). SATB2 expression was also detected in 15% of ovarian endometrioid carcinoma but less than 5% of other ovarian histotypes. A simple two marker combination of CK7 and SATB2 can distinguish lower gastrointestinal from ovarian primary mucinous tumors with greater than 95% accuracy. PAX8 and CDX2 have value as second-line markers. The utility of CK20 in this setting is low and this warrants replacement of this marker with SATB2 in clinical practice