8 research outputs found

    Histomorphometric evaluation of strontium-containing nanostructured hydroxyapatite as bone substitute in sheep

    No full text
    Abstract The aim of this study is to evaluate the biocompatibility and osteoconductivity in surgical defects of sheep tibias filled with 1% strontium-containing nanostructured hydroxyapatite microspheres (SrHA), stoichiometric hydroxyapatite without strontium microspheres (HA), or blood clots. Santa Ines sheep were subjected to three perforations on the medial side of the left tibia. The biomaterials were characterized by X-ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) before implantation and by X-Ray Microfluorescence (µFRX) and Scanning Electron Microscopy (SEM) after sheep tibias implantation. Surgical defects were filled with blood clots (control), SrHA (Group 1) or HA (Group 2). After 30 days, 5-µm bone blocks were obtained for histological evaluation, and the blocks obtained from 1 animal were embedded in methylmethacrylate for undecalcified sections. Mononuclear inflammatory infiltrate remained mild in all experimental groups. Giant cells were observed surrounding biomaterials particles of both groups and areas of bone formation were detected in close contact with biomaterials. All groups showed newly formed bone from the periphery to the center of the defects, which the control, HA and SrHA presented 36.4% (± 21.8), 31.2% (± 14.7) and 26.2% (± 12.9) of newly formed bone density, respectively, not presenting statistical differences. In addition, the connective tissue density did not show any significant between groups. The SrHA showing a higher volume density of biomaterial (51.2 ± 14.1) present in the defect compared to HA (32.6 ± 8.5) after 30 days (p = 0.03). Microspheres containing 1% SrHA or HA can be considered biocompatible, have osteoconductive properties and may be useful biomaterials for clinical applications

    Late Adherent Human Bone Marrow Stromal Cells Form Bone and Restore the Hematopoietic Microenvironment In Vivo

    Get PDF
    Bone marrow stromal cells (BMSCs) are a valuable resource for skeletal regenerative medicine because of their osteogenic potential. In spite of the very general term “stem cell,” this population of cells is far from homogeneous, and different BMSCs clones have greatly different phenotypic properties and, therefore, potentially different therapeutic potential. Adherence to a culture flask surface is a primary defining characteristic of BMSCs. We hypothesized that based on the adherence time we could obtain an enriched population of cells with a greater therapeutic potential. We characterized two populations of bone marrow-derived cells, those that adhered by three days (R-cells) and those that did not adhere by three days but did by six days (L-cells). Clones derived from L-cells could be induced into adipogenic, chondrogenic, and osteogenic differentiation in vitro. L-cells appeared to have greater proliferative capacity, as manifested by larger colony diameter and clones with higher CD146 expression. Only clones from L-cells developed bone marrow stroma in vivo. We conclude that the use of late adherence of BMSCs is one parameter that can be used to enrich for cells that will constitute a superior final product for cell therapy in orthopedics

    Influence of estrogen deficiency and tibolone therapy on trabecular and cortical bone evaluated by computed radiography system in rats Influência da deficiência estrogênica e do tratamento com tibolona no osso trabecular e cortical avaliada pelo sistema de radiografia computadorizada em ratas

    No full text
    PURPOSE: To verify the effects of tibolone administration on trabecular and cortical bone of ovariectomized female rats by computed radiography system (CRS). METHODS: The experiment was performed on two groups of rats previously ovariectomized, one received tibolone (OVX+T) while the other did not (OVX), those groups were compared to a control group (C) not ovariectomized. Tibolone administration (1mg/day) began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs and tibias collected. Computed radiographies of the bones were obtained and the digital images were used to determine the bone optical density and cortical thickness on every group. All results were statistically evaluated with significance set at P<0.05%. RESULTS: Tibolone administration was shown to be beneficial only in the densitometric analysis of the femoral head, performing higher optical density compared to OVX. No difference was found in cortical bone thickness. CONCLUSION: Ovariectomy caused bone loss in the analyzed regions and tibolone administered in high doses over a long period showed not to be fully beneficial, but preserved bone mass in the femoral head.<br>OBJETIVO: Verificar o efeito da administração de tibolona no tecido ósseo cortical e trabecular de ratas castradas através de radiografia computadorizada. MÉTODOS: O experimento foi realizado em dois grupos de ratas previamente ooforectomizadas, onde um grupo recebeu tibolona (OVX+T) e o outro não (OVX). Esses grupos foram comparados a um grupo controle (C) não ooforectomizado. A administração de tibolona (1mg/dia) começou trinta dias após a ooforectomia e o tratamento teve duração de cinco meses. No final, os animais foram mortos e fêmures e tibias coletados. As radiografias computadorizadas dos ossos foram obtidas e as imagens digitais usadas para determinar a densidade óssea e a espessura cortical em todos os grupos. Todos os resultados foram avaliados estatisticamente com significância estabelecida a 5%. RESULTADOS: A administração de tibolona mostrou ser benéfica apenas para análise densitométrica da cabeça do fêmur, apresentando maiores valores de densidade comparada ao grupo OVX. Nenhuma diferença significativa foi encontrada para espessura óssea cortical. CONCLUSÃO: A ooforectomia ocasionou perda óssea nas regiões analisadas e a tibolona administrada, em dose elevada e durante um longo período, mostrou não ser totalmente benéfica, porém preservou a massa óssea na cabeça femoral
    corecore