181 research outputs found

    Regulation of Cell Survival and Death Signals Induced by Oxidative Stress

    Get PDF
    Oxidative stress stimulates two opposite signaling pathways leading to cell death and cell survival. Preferential selection of survival signals leads to the protection of cells against damage induced by reactive oxygen species, whereas preferential acceleration of death signals can be used to advantage in tumor therapy with oxidizing agents such as ionizing radiation and anticancer drugs. In vitro and in vivo experiments using cultured mammalian cells and experimental animals showed that ERK was included in survival signals and SAPK and p38 MAPK in death signals in oxidative stress. The activation of SAPK/JNK and subsequent expression of death receptor Fas on the cell surface caused the induction of cell death. The results mean that the acceleration of the activation of SAPK/JNK might lead to the enhancement of cell death by oxidizing agents like ionizing radiation and anticancer drugs. In fact, when cultured mammalian cells were exposed to ionizing radiation with 2-nitroimidazole derivatives having electrophilicity, the lethal effect of ionizing radiation was found to be enhanced together with the activation of SAPK/JNK and the enhancement of Fas expression. The activation of both survival and death signals was suppressed by the antioxidants N-acetylcystein and Trolox, suggesting that both signaling pathways are redox-regulated

    Roles of p38 MAPK, PKC and PI3-K in the signaling pathways of NADPH oxidase activation and phagocytosis in bovine polymorphonuclear leukocytes

    Get PDF
    AbstractStimulation of bovine polymorphonuclear leukocytes (PMN) with serum-opsonized zymosan (sOZ) induced the activation of p38 mitogen-activated protein kinase (MAPK), protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3-K) and sOZ-induced O2− production was significantly attenuated by their inhibitors (SB203580 for p38 MAPK, GF109203X for PKC and wortmannin for PI3-K). They caused significant attenuation of sOZ-induced phosphorylation of p47phox as well. Flow cytometric analysis, however, revealed that SB203580 and wortmannin attenuated phagocytosis, but GF109203X facilitated it. The results suggest that p38 MAPK and PI3-K participated in both signaling pathways of NADPH oxidase activation (O2− production) and phagocytosis, and PKC participated in the signaling pathway of NADPH oxidase activation alone

    A nucleoside anticancer drug, 1-(3-C-ethynyl-β-D-ribo-pentofuranosyl)cytosine (TAS106), sensitizes cells to radiation by suppressing BRCA2 expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A novel anticancer drug 1-(3-C-ethynyl-β-D-ribo-pentofuranosyl)cytosine (ECyd, TAS106) has been shown to radiosensitize tumor cells and to improve the therapeutic efficiency of X-irradiation. However, the effect of TAS106 on cellular DNA repair capacity has not been elucidated. Our aim in this study was to examine whether TAS106 modified the repair capacity of DNA double-strand breaks (DSBs) in tumor cells.</p> <p>Methods</p> <p>Various cultured cell lines treated with TAS106 were irradiated and then survival fraction was examined by the clonogenic survival assays. Repair of sublethal damage (SLD), which indicates DSBs repair capacity, was measured as an increase of surviving cells after split dose irradiation with an interval of incubation. To assess the effect of TAS106 on the DSBs repair activity, the time courses of γ-H2AX and 53BP1 foci formation were examined by using immunocytochemistry. The expression of DNA-repair-related proteins was also examined by Western blot analysis and semi-quantitative RT-PCR analysis.</p> <p>Results</p> <p>In clonogenic survival assays, pretreatment of TAS106 showed radiosensitizing effects in various cell lines. TAS106 inhibited SLD repair and delayed the disappearance of γ-H2AX and 53BP1 foci, suggesting that DSB repair occurred in A549 cells. Western blot analysis demonstrated that TAS106 down-regulated the expression of BRCA2 and Rad51, which are known as keys among DNA repair proteins in the homologous recombination (HR) pathway. Although a significant radiosensitizing effect of TAS106 was observed in the parental V79 cells, pretreatment with TAS106 did not induce any radiosensitizing effects in BRCA2-deficient V-C8 cells.</p> <p>Conclusions</p> <p>Our results indicate that TAS106 induces the down-regulation of BRCA2 and the subsequent abrogation of the HR pathway, leading to a radiosensitizing effect. Therefore, this study suggests that inhibition of the HR pathway may be useful to improve the therapeutic efficiency of radiotherapy for solid tumors.</p

    Hypoxia and Etanidazole Alter Radiation-Induced Apoptosis in HL60 Cells but Not in MOLT-4 Cells

    Get PDF
    培養細胞において放射線照射誘発アポトーシスに対する低酸素状態での照射の影響を検討した。HL60及びMolt4細胞を空気中及び低酸素下で15GyのX線を照射した。放射線増感剤としてEtanidazoleを用いた。アポトーシスの検出は核の形態観察と電気泳動によるラダーの検出により行った。HL60細胞では低酸素下での照射ではアポトーシスによる細胞死が減少し、カスパーゼ8、9及び3の活性誘導も減少した。低酸素下でEtanidazoleはX線誘発アポトーシスとカスパーゼの活性を高めた。しかし、Molt4細胞ではEtanidazoleの影響は認められなかった。この2細胞におけるX線誘発DNA二重鎖切断(DSB)は低酸素下での照射ではともに空気中での照射に比べて有意に減少した。低酸素下でEtanidazoleはX線誘発DSBを増加させた。これらの結果からHL60においてはX線誘発アポトーシスはDSBによって引導されること、Molt4では他の損傷が引き金になってアポトーシスが誘発されることが示唆された

    Metabolic analysis of radioresistant medulloblastoma stem-like clones and potential therapeutic targets

    Get PDF
    Medulloblastoma is a fatal brain tumor in children, primarily due to the presence of treatment-resistant medulloblastoma stem cells. The energy metabolic pathway is a potential target of cancer therapy because it is often different between cancer cells and normal cells. However, the metabolic properties of medulloblastoma stem cells, and whether specific metabolic pathways are essential for sustaining their stem cell-like phenotype and radioresistance, remain unclear. We have established radioresistant medulloblastoma stem-like clones (rMSLCs) by irradiation of the human medulloblastoma cell line ONS-76. Here, we assessed reactive oxygen species (ROS) production, mitochondria function, oxygen consumption rate (OCR), energy state, and metabolites of glycolysis and tricarboxylic acid cycle in rMSLCs and parental cells. rMSLCs showed higher lactate production and lower oxygen consumption rate than parental cells. Additionally, rMSLCs had low mitochondria mass, low endogenous ROS production, and existed in a low-energy state. Treatment with the metabolic modifier dichloroacetate (DCA) resulted in mitochondria dysfunction, glycolysis inhibition, elongated mitochondria morphology, and increased ROS production. DCA also increased radiosensitivity by suppression of the DNA repair capacity through nuclear oxidization and accelerated the generation of acetyl CoA to compensate for the lack of ATP. Moreover, treatment with DCA decreased cancer stem cell-like characters (e.g., CD133 positivity and sphere-forming ability) in rMSLCs. Together, our findings provide insights into the specific metabolism of rMSLCs and illuminate potential metabolic targets that might be exploited for therapeutic benefit in medulloblastoma

    Laboratory of Radiation Biology

    Get PDF

    Purvalanol A enhances cell killing by inhibiting up-regulation of CDC2 kinase activity in tumor cells irradiated with high doses of X rays.

    Get PDF
    To clarify the relationship between CDC2 kinase activity and radiation-induced apoptosis, we examined whether the cyclin-dependent kinase (CDK) inhibitor purvalanol A enhanced radiation-induced apoptosis in gastric tumor cells. MKN45 cells exposed to 20 Gy of X rays increased the CDC2 kinase activity and the expression of regulatory proteins (phospho-CDC2 and cyclin B1) of the G2/M phase, followed by activation of the G2/M checkpoint, whereas the treatment of X-irradiated MKN45 cells with 20 μM purvalanol A suppressed the increase in the CDC2 kinase activity and expression of the G2/M-phase regulatory proteins and reduced the fraction of the cells in the G2/M phase in the cell cycle. Furthermore, this treatment resulted in not only a significant increase in radiation-induced apoptosis but also the loss of clonogenicity in both MKN45 (p53-wild) and MKN28 (p53-mutated) cells. The expression of anti-apoptosis proteins, inhibitor of apoptosis protein (IAP) family members (survivin and XIAP) and BCL2 family members (Bcl-XL and Bcl-2), in purvalanol A-treated cells with and without X rays was significantly lower than for cells exposed to X rays alone. These results suggest that the inhibition of radiation-induced CDC2 kinase activity by purvalanol A induces apoptosis through the enhancement of active fragments of caspase 3
    corecore