15 research outputs found

    Tavoitteisiin liittyvä palvelutason tarkastelutapa

    No full text

    Tavoitteisiin liittyvä palvelutason tarkastelutapa

    No full text

    Brain volumes and white matter microstructure in 8- to 10-year-old children born with fetal growth restriction

    No full text
    Abstract Background: Fetal growth restriction caused by placental insufficiency is associated with increased risk of poor neurodevelopment, even in the absence of specific perinatal brain injury. Placental insufficiency leads to chronic hypoxaemia that may alter cerebral tissue organisation and maturation. Objective: The aim of this study was to assess the effects fetal growth restriction and fetal haemodynamic abnormalities have on brain volumes and white matter microstructure at early school age. Materials and methods: This study examined 32 children born with fetal growth restriction at 24 to 40 gestational weeks, and 27 gestational age-matched children, who were appropriate for gestational age. All children underwent magnetic resonance imaging (MRI) at the age of 8–10 years. Cerebral volumes were analysed, and tract-based spatial statistics and atlas-based analysis of white matter were performed on 17 children born with fetal growth restriction and 14 children with birth weight appropriate for gestational age. Results: Children born with fetal growth restriction demonstrated smaller total intracranial volumes compared to children with normal fetal growth, whereas no significant differences in grey or white matter volumes were detected. On atlas-based analysis of white matter, children born with fetal growth restriction demonstrated higher mean and radial diffusivity values in large white matter tracts when compared to children with normal fetal growth. Conclusion: Children ages 8–10 years old born with fetal growth restriction demonstrated significant changes in white matter microstructure compared to children who were appropriate for gestational age, even though no differences in grey and white matter volumes were detected. Poor fetal growth may impact white matter maturation and lead to neurodevelopmental impairment later in life

    Reliability of the freehand region-of-interest method in quantitative cerebral diffusion tensor imaging

    Get PDF
    Background: Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique used for evaluating changes in the white matter in brain parenchyma. The reliability of quantitative DTI analysis is influenced by several factors, such as the imaging protocol, pre-processing and post-processing methods, and selected diffusion parameters. The region-of-interest (ROI) method is most widely used of the post-processing methods because it is found in commercial software. The focus of our research was to study the reliability of the freehand ROI method using various intra- and inter-observer analyses. Methods: This study included 40 neurologically healthy participants who underwent diffusion MRI of the brain with a 3 T scanner. The measurements were performed at nine different anatomical locations using a freehand ROI method. The data extracted from the ROIs included the regional mean values, intra- and inter-observer variability and reliability. The used DTI parameters were fractional anisotropy (FA), the apparent diffusion coefficient (ADC), and axial (AD) and radial (RD) diffusivity. Results: The average intra-class correlation coefficient (ICC) of the intra-observer was found to be 0.9 (excellent). The single ICC results were excellent (> 0.8) or adequate (> 0.69) in eight out of the nine regions in terms of FA and ADC. The most reliable results were found in the frontobasal regions. Significant differences between age groups were also found in the frontobasal regions. Specifically, the FA and AD values were significantly higher and the RD values lower in the youngest age group (18–30 years) compared to the other age groups. Conclusions: The quantitative freehand ROI method can be considered highly reliable for the average ICC and mostly adequate for the single ICC. The freehand method is suitable for research work with a well-experienced observer. Measurements should be performed at least twice in the same region to ensure that the results are sufficiently reliable. In our study, reliability was slightly undermined by artifacts in some regions such as the cerebral peduncle and centrum semiovale. From a clinical point of view, the results are most reliable in adults under the age of 30, when age-related changes in brain white matter have not yet occurred.publishedVersionPeer reviewe
    corecore