65 research outputs found

    The use of vibrational spectroscopy to study the pathogenesis multiple sclerosis and other neurological conditions

    Get PDF
    Spectroscopy techniques are valuable tools in biomedical research and have been used extensively in the study of disease. However, neurological conditions such as multiple sclerosis (MS) have received little attention and the available spectroscopy studies are limited, both in overall numbers of patients studied and the disease samples considered. MS is a complex immune-mediated disease, with variable clinical courses and limited therapeutic options. This review aims to summarize current literature in the area, demonstrating how spectroscopy techniques can provide valuable information to inform and advance research into the most common neurological condition affecting young adults

    Developing A Synthetic Composite Membrane For Cleft Palate Repair

    Get PDF
    An oronasal fistula is a passage between the oral and nasal cavity. Currently, surgical procedures use mucosal flaps or collagen grafts to make a barrier between oral and nasal cavities. Our aim was to develop a cell-free synthetic repair material for closure of nasal fistulas. We surface functionalized electrospun polyurethane (PU) and poly-L-lactic acid (PLLA) and composite polymer (PU-PLLA) membranes with acrylic acid through plasma polymerization. Membranes were treated in a layer-by-layer approach to develop highly charged electrostatic layer that could bind heparin as a pro-angiogenic glycosaminoglycan. The properties were evaluated through physical, chemical, and mechanical characterization techniques. Cytotoxicity was tested with MC3T3 pre-osteoblast cell lines for 3, 7, and 14 days, and vasculogenesis was assessed by implantation into the chorio-allantoic membrane in chick embryos for 7 days. In vivo biocompatibility was assessed by subcutaneous implantation in rats for 1, 3, and 6 weeks. The membranes consisted of random fibers of PLLA-PU with fiber diameters of 0.47 and 0.12 μm, respectively. Significantly higher cell proliferation and migration of MC3T3 cells at 3, 7, and 14 days were shown on plasma-coated membranes compared with uncoated membranes. Further, it was found that plasma-coated membranes were more angiogenic than controls. In vivo implantation of membranes in rats did not reveal any gross toxicity to the materials, and wound healing was comparable with the native tissue repair (sham group). We therefore present a plasma-functionalized electrospun composite polymer membrane for use in the treatment of fistulas. These membranes are flexible, non-cytotoxic, and angiogenic, and we hope it should lead to permanent closure of oronasal fistula

    Ceramic Stereolithography of Bioactive Glasses: Influence of Resin Composition on Curing Behavior and Green Body Properties

    Get PDF
    Herein we report on the preparation of a bioactive glass (BAG)-based photocurable resin for the additive manufacturing of BAG scaffolds with high filler loadings. The preparation of glass/ceramics resins for stereolithography with high filler loading is always a challenge, especially for fillers with a high refractive index variance. Various photocurable resin compositions with and without bioactive glass fillers have been investigated to see the influence of bioactive glass on physical properties of the resin and resulting green body. The effect of concentration of monomers, reactive diluent, light absorber (Sudan orange G dye), photoinitiator (PI), non-reactive diluent, and fillers (BAG) on rheology and photocuring behavior of the resin and tomography of the resulting 3D structures have been investigated. The BAG contents affect the rheology of resin and influence the rate of the polymerization reaction. The resin compositions with 55–60% BAG, 10% PEG-200 (diluent), 1% of PI and 0.015% of the dye were found to be suitable compositions for the stereolithographic fabrication. A higher percentage of PI caused over-curing, while a higher amount of dye decreased the cure depth of the resin. The micro-computed tomography (µ-CT) and scanning electron microscopic (SEM) images of the resulting green bodies display a relatively dense glass scaffold without any visible cracks and good interlayer connection and surface finishing. These properties play an important role in the mechanical behavior of 3D scaffolds. This study will be helpful to prepare high density glass/ceramic slurries and optimize their printing properties

    Raman spectroscopy detects melanoma and the tissue surrounding melanoma using tissue-engineered melanoma models

    Get PDF
    Invasion of melanoma cells from the primary tumour involves interaction with adjacent tissues and extracellular matrix. The extent of this interaction is not fully understood. In this study Raman spectroscopy was applied to cryo-sections of established 3D models of melanoma in human skin. Principal component analysis was used to investigate differences between the tumour and normal tissue and between the peri-tumour area and the normal skin. Two human melanoma cells lines A375SM and C8161 were investigated and compared in 3D melanoma models. Changes were found in protein conformations and tryptophan configurations across the entire melanoma samples, in tyrosine orientation and in more fluid lipid packing only in tumour dense areas, and in increased glycogen content in the peri-tumour areas of melanoma. Raman spectroscopy revealed changes around the perimeter of a melanoma tumour as well as detecting differences between the tumour and the normal tissue

    Synthesis and in-vitro cytotoxicity analysis of microwave irradiated nano-apatites

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Ceramics International. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in CERAMICS INTERNATIONAL, [VOL 39, ISSUE 4, (2013)] DOI 10.1016/j.ceramint.2012.11.017Nano-sized calcium deficient apatite (CDA) micelles were synthesized through microwave assisted the wet precipitation technique. Cetyltrimethylammonium bromide (CTAB) was employed as surface template to furnish the CDA particles with tailored size and shape. As-precipitated CDA was heat treated to observe the effect of heat treatment temperature on the interatomic rearrangement of entities within the apatite lattice. This transformation is responsible for conversion of CDA to β-tricalcium phosphate (β-TCP) at specific temperature. The phase purity, particles size, morphology and transformation kinetics were analyzed using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA). In-vitro studies were performed on β-TCP with three cell lines: osteoblasts, HeLa, and SF 767. The results showed that nano-sized particles were successfully synthesized in short time. The cells had appreciable proliferation/attachment on the surface of these nano-particles. It is concluded that the microwave irradiated synthesized β-TCP has good capacity in terms of biocompatibility and has the potential to be used in hard tissue regeneration applications.Nano-sized calcium deficient apatite (CDA) micelles were synthesized through microwave assisted the wet precipitation technique. Cetyltrimethylammonium bromide (CTAB) was employed as surface template to furnish the CDA particles with tailored size and shape. As-precipitated CDA was heat treated to observe the effect of heat treatment temperature on the interatomic rearrangement of entities within the apatite lattice. This transformation is responsible for conversion of CDA to β-tricalcium phosphate (β-TCP) at specific temperature. The phase purity, particles size, morphology and transformation kinetics were analyzed using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA). In-vitro studies were performed on β-TCP with three cell lines: osteoblasts, HeLa, and SF 767. The results showed that nano-sized particles were successfully synthesized in short time. The cells had appreciable proliferation/attachment on the surface of these nano-particles. It is concluded that the microwave irradiated synthesized β-TCP has good capacity in terms of biocompatibility and has the potential to be used in hard tissue regeneration applications

    Preliminary fabrication and characterization of electron beam melted Ti–6Al–4V customized dental implant

    Get PDF
    The current study was aimed to fabricate customized root form dental implant using additive manufacturing technique for the replacement of missing teeth. The root form dental implant was designed using GeomagicTM and MagicsTM, the designed implant was directly manufactured by layering technique using ARCAM A2TM electron beam melting system by employing medical grade Ti–6Al–4V alloy powder. Furthermore, the fabricated implant was characterized in terms of certain clinically important parameters such as surface microstructure, surface topography, chemical purity and internal porosity. Results confirmed that, fabrication of customized dental implants using additive rapid manufacturing technology offers an attractive method to produce extremely pure form of customized titanium dental implants, the rough and porous surface texture obtained is expected to provide better initial implant stabilization and superior osseointegration

    Applications of raman spectroscopy in dentistry part II: Soft tissue analysis

    Get PDF
    Raman spectroscopy is rapidly moving from an experimental technique for the analysis of biological molecules to a tool for the real-time clinical diagnosis and in situ evaluation of the oral tissue in medical and dental research. The purpose of this study is to identify various applications of Raman spectroscopy, to evaluate the contemporary status and to explore future directions in the field of dentistry. Several in-depth applications are presented to illustrate Raman spectroscopy in early diagnosis of soft tissue abnormalities. Raman spectroscopy allows to analyze histological and biochemical composition of biological tissues. The technique not only demonstrates its role in the disclosure of dysplasia and malignancy but also in performing guided biopsies, diagnosing sialoliths, and assessment of surgical margins. Raman spectroscopy is used to identify the molecular structures and its components to give substantial information about the chemical structure properties of these molecules. In this paper, we acquaint the utilization of Raman spectroscopy in analyzing the soft tissues in relation to dentistry

    Special Issue: Molecular Research on Dental Materials and Biomaterials 2018

    No full text
    Worldwide, populations of all ages suffer from oral diseases, disorders, pathological conditions of the oral cavity, and their impact on the human body [...
    • …
    corecore