46 research outputs found

    Regulation of Sp1 by cell cycle related proteins

    Get PDF
    Sp1 transcription factor regulates the expression of multiple genes, including the Sp1 gene itself. We analyzed the ability of different cell cycle regulatory proteins to interact with Sp1 and to affect Sp1 promoter activity. Using an antibody array, we observed that CDK4, SKP2, Rad51, BRCA2 and p21 could interact with Sp1 and we confirmed these interactions by co-immunoprecipitation. CDK4, SKP2, Rad51, BRCA2 and p21 also activated the Sp1 promoter. Among the known Sp1-interacting proteins, E2F-DP1, Cyclin D1, Stat3 and Rb activated the Sp1 promoter, whereas p53 and NFκB inhibited it. The proteins that regulated Sp1 gene expression were shown by positive chromatin immunoprecipitation to be bound to the Sp1 promoter. Moreover, SKP2, BRCA2, p21, E2F-DP1, Stat3, Rb, p53 and NFκB had similar effects on an artificial promoter containing only Sp1 binding sites. Transient transfections of CDK4, Rad51, E2F-DP1, p21 and Stat3 increased mRNA expression from the endogenous Sp1 gene in HeLa cells whereas overexpression of NFκB, and p53 decreased Sp1 mRNA levels. p21 expression from a stably integrated inducible promoter in HT1080 cells activated Sp1 expression at the promoter and mRNA levels, but at the same time it decreased Sp1 protein levels due to the activation of Sp1 degradation. The observed multiple effects of cell cycle regulators on Sp1 suggest that Sp1 may be a key mediator of cell cycle associated changes in gene expression

    Identification of single nucleotide polymorphisms in the p21 (CDKN1A) gene and correlations with longevity in the Italian population

    Get PDF
    Longevity in humans is determined by multiple environmental and genetic factors. We have investigated possible associations between longevity and Single Nucleotide Polymorphisms (SNPs) in the p21 (CDKN1A) gene, a stress-inducible senescence-associated cell cycle inhibitor, expression of which upregulates genes implicated in several age-related diseases. By sequencing the promoter and exons of p21 in genomic DNA of ten individuals over 90 years old, we have identified 30 SNPs, many of which had not been previously characterized. A cluster of minor alleles within the -4547/-3489 bp region did not alter the basal activity or p53 responsiveness of the p21 promoter. We then compared the frequency of 41 p21 SNPs between 184 centenarians and 184 younger subjects in the Italian population. Rare alleles of two exon-derived SNPs, rs1801270 and rs1059234, were significantly under-represented among the centenarians; no significant differences were found for 39 non-exonic SNPs. SNP rs1801270 causes Ser to Arg substitution at amino acid 31 and SNP rs1059234 leads to a nucleotide change in the 3'-untranslated region. Previous studies showed that the rare alleles of these two SNPs may play a role in cancer. These p21 alleles may be potentially detrimental to longevity and therefore are rare in centenarians

    A structural interpretation of the effect of GC-content on efficiency of RNA interference

    Get PDF
    BACKGROUND: RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) has become a powerful technique for eukaryotic gene knockdown. siRNA GC-content negatively correlates with RNAi efficiency, and it is of interest to have a convincing mechanistic interpretation of this observation. We here examine this issue by considering the secondary structures for both the target messenger RNA (mRNA) and the siRNA guide strand. RESULTS: By analyzing a unique homogeneous data set of 101 shRNAs targeted to 100 endogenous human genes, we find that: 1) target site accessibility is more important than GC-content for efficient RNAi; 2) there is an appreciable negative correlation between GC-content and RNAi activity; 3) for the predicted structure of the siRNA guide strand, there is a lack of correlation between RNAi activity and either the stability or the number of free dangling nucleotides at an end of the structure; 4) there is a high correlation between target site accessibility and GC-content. For a set of representative structural RNAs, the GC content of 62.6% for paired bases is significantly higher than the GC content of 38.7% for unpaired bases. Thus, for a structured RNA, a region with higher GC content is likely to have more stable secondary structure. Furthermore, by partial correlation analysis, the correlation for GC-content is almost completely diminished, when the effect of target accessibility is controlled. CONCLUSION: These findings provide a target-structure-based interpretation and mechanistic insight for the effect of GC-content on RNAi efficiency

    Identifying Cancers Impacted by CDK8/19

    Get PDF
    CDK8 and CDK19 Mediator kinases are transcriptional co-regulators implicated in several types of cancer. Small-molecule CDK8/19 inhibitors have recently entered or are entering clinical trials, starting with breast cancer and acute myeloid leukemia (AML). To identify other cancers where these novel drugs may provide benefit, we queried genomic and transcriptomic databases for potential impact of CDK8, CDK19, or their binding partner CCNC. sgRNA analysis of a panel of tumor cell lines showed that most tumor types represented in the panel, except for some central nervous system tumors, were not dependent on these genes. In contrast, analysis of clinical samples for alterations in these genes revealed a high frequency of gene amplification in two highly aggressive subtypes of prostate cancer and in some cancers of the GI tract, breast, bladder, and sarcomas. Analysis of survival correlations identified a group of cancers where CDK8 expression correlated with shorter survival (notably breast, prostate, cervical cancers, and esophageal adenocarcinoma). In some cancers (AML, melanoma, ovarian, and others), such correlations were limited to samples with a below-median tumor mutation burden. These results suggest that Mediator kinases are especially important in cancers that are driven primarily by transcriptional rather than mutational changes and warrant an investigation of their role in additional cancer types

    Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing

    Get PDF
    The cyclin-dependent kinase inhibitor p21WAF1/CIP1 (p21) is a cell-cycle checkpoint effector and inducer of senescence, regulated by p53. Yet, evidence suggests that p21 could also be oncogenic, through a mechanism that has so far remained obscure. We report that a subset of atypical cancerous cells strongly expressing p21 showed proliferation features. This occurred predominantly in p53-mutant human cancers, suggesting p53-independent upregulation of p21 selectively in more aggressive tumour cells. Multifaceted phenotypic and genomic analyses of p21-inducible, p53-null, cancerous and near-normal cellular models showed that after an initial senescence-like phase, a subpopulation of p21-expressing proliferating cells emerged, featuring increased genomic instability, aggressiveness and chemoresistance. Mechanistically, sustained p21 accumulation inhibited mainly the CRL4–CDT2 ubiquitin ligase, leading to deregulated origin licensing and replication stress. Collectively, our data reveal the tumour-promoting ability of p21 through deregulation of DNA replication licensing machinery—an unorthodox role to be considered in cancer treatment, since p21 responds to various stimuli including some chemotherapy drugs

    Identifying Cancers Impacted by CDK8/19

    No full text
    CDK8 and CDK19 Mediator kinases are transcriptional co-regulators implicated in several types of cancer. Small-molecule CDK8/19 inhibitors have recently entered or are entering clinical trials, starting with breast cancer and acute myeloid leukemia (AML). To identify other cancers where these novel drugs may provide benefit, we queried genomic and transcriptomic databases for potential impact of CDK8, CDK19, or their binding partner CCNC. sgRNA analysis of a panel of tumor cell lines showed that most tumor types represented in the panel, except for some central nervous system tumors, were not dependent on these genes. In contrast, analysis of clinical samples for alterations in these genes revealed a high frequency of gene amplification in two highly aggressive subtypes of prostate cancer and in some cancers of the GI tract, breast, bladder, and sarcomas. Analysis of survival correlations identified a group of cancers where CDK8 expression correlated with shorter survival (notably breast, prostate, cervical cancers, and esophageal adenocarcinoma). In some cancers (AML, melanoma, ovarian, and others), such correlations were limited to samples with a below-median tumor mutation burden. These results suggest that Mediator kinases are especially important in cancers that are driven primarily by transcriptional rather than mutational changes and warrant an investigation of their role in additional cancer types
    corecore