89 research outputs found

    Generation of multiparametric MRI maps by using Gd-labelled-RBCs reveals phenotypes and stages of murine prostate cancer

    Get PDF
    We acknowledge BRACCO Imaging for providing Gadoteridol (ProHance). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 668119 (project “IDentIFY”) and No 667510 (project “GLINT”) and it was performed in the framework of COST Action AC15209 (EURELAX). E.D.G. and G.F. were supported by FIRC-AIRC (Fondazione Italiana per la Ricerca sul Cancro AIRC) fellowships.Peer reviewedPublisher PD

    The Onset and Solidification Path of a Basaltic Melt by in situ Differential Scanning Calorimetry (DSC) and ex situ Investigations

    Get PDF
    The in situ differential scanning calorimetry (DSC) technique has been applied to investigate the solidification paths of a basaltic liquid. The starting glass was heated up to 1300°C, kept at this superliquidus temperature for 2 h and cooled at rates (ΔT/Δt) of 7, 60, 180, 1000, and 1800°C/h, down to 800 and 600°C. Glass transition temperature (Tg), crystallization temperature (Tx_HR) and melting temperature (Tm) were measured by in situ DSC spectra on heating. Tx measured along the cooling paths (Tx_CR) shows exothermic peaks that change from a single symmetric shape (7 and 60°C/h) to multi-component patterns (180, 1000, and 1800°C/h). The recovered products characterized by field emission gun source of the scanning electron microscopy and electron probe micro-analyzer-wavelength dispersive spectrometers show a phase assemblage of spinel (sp), clinopyroxene (cpx), melilite (mel), plagioclase (plg), and glass. Moreover, crystal size distributions (CSDs) and growth rates (Gmax and GCSD) were also determined. The crystal content slightly increases from 7 to 1800°C/h. Faceted sp are present in all the run products with an amount always <2 area%. Cpx increases from 7 to 1800°C/h, changing its texture from almost faceted to dendritic between 60 and 180°C/h. The area% of mel follows an asymmetric Gaussian trend, while plg nucleates only at 7°C/h with a content <2 area%. The coupling of DSC and SEM outcomes indicate that sp nucleate first, followed by cpx and mel (and/or plg). The increment of ΔT/Δt causes an increase of the CSD slope (m) and crystal population density per size (n0), as well as a decrease of the crystal size, for both cpx and sp. The log-linear CSD segments with different slopes at 7 and 60°C/h suggest multiple nucleation events and crystal growth by coarsening. Gmax and GCSD for cpx and sp directly measured on the actual crystallization time by DSC spectra, both increase with the increasing of ΔT/Δt. The onset temperature of crystallization (Txi) decreases as ΔT/Δt increases, following an exponential trend that defines the uppermost portion of a time-transformation-temperature-like curve. This analytical model allows us to quantitatively model the kinetic crystallization paths of dry basalts

    An integrated approach of immunogenomics and bioinformatics to identify new Tumor Associated Antigens (TAA) for mammary cancer immunological prevention

    Get PDF
    BACKGROUND: Neoplastic transformation is a multistep process in which distinct gene products of specific cell regulatory pathways are involved at each stage. Identification of overexpressed genes provides an unprecedented opportunity to address the immune system against antigens typical of defined stages of neoplastic transformation. HER-2/neu/ERBB2 (Her2) oncogene is a prototype of deregulated oncogenic protein kinase membrane receptors. Mice transgenic for rat Her2 (BALB-neuT mice) were studied to evaluate the stage in which vaccines can prevent the onset of Her2 driven mammary carcinomas. As Her2 is not overexpressed in all mammary carcinomas, definition of an additional set of tumor associated antigens (TAAs) expressed at defined stages by most breast carcinomas would allow a broader coverage of vaccination. To address this question, a meta-analysis was performed on two transcription profile studies [1,2] to identify a set of new TAA targets to be used instead of or in conjunction with Her2. RESULTS: The five TAAs identified (Tes, Rcn2, Rnf4, Cradd, Galnt3) are those whose expression is linearly related to the tumor mass increase in BALB-neuT mammary glands. Moreover, they have a low expression in normal tissues and are generally expressed in human breast tumors, though at a lower level than Her2. CONCLUSION: Although the number of putative TAAs identified is limited, this pilot study suggests that meta-analysis of expression profiles produces results that could assist in the designing of pre-clinical immunopreventive vaccines

    HER2-Driven Carcinogenesis: New Mouse Models for Novel Immunotherapies

    Get PDF
    HER2 overexpression is a hallmark of aggressive breast cancer subtypes, and HER2-targeted therapies, such as passive immunotherapy with the humanized monoclonal antibody Trastuzumab, have become standard treatments for these tumor subtypes. However, increasing evidence points to a major role for the Δ16HER2 splice variant, which is commonly coexpressed with the wild-type protein, in cancer progression, metastatic potential and resistance to Trastuzumab treatment. Using our recently derived mouse strain transgenically expressing human Δ16HER2 under the transcriptional control of the MMTV promoter, we showed that this HER2 isoform per se can transform mammary epithelium in vivo. Thus, Δ16HER2 mice provide a new preclinical model in which to study mammary carcinogenesis and the metastatic process, as well as new therapies, including immune-based DNA vaccines. Such vaccines, by virtue of the polyclonal response they induce, might synergize with standard treatments and might ensure targeting of HER2 variants no longer recognized by monoclonal antibodies. In addition, immunological memory might provide long-term anticancer immune protection without side effects associated with many conventional therapies. The efficacy of DNA vaccination against the HER2 oncoantigen has been widely demonstrated in BALB-neuT mice transgenically expressing the activated rat neu oncogene and recapitulating several features of human breast cancers; however, HER2 is a self-tolerated molecule and an effective response to it must circumvent tolerance mechanisms. Here, we retrace the findings that have led to our most promising DNA vaccines encoding human/rat chimeric forms of the HER2 molecule bearing both xenogeneic and syngeneic portions of the protein and able to overcome peripheral tolerance. Preclinical data obtained with our DNA vaccines have provided the rationale for their use in an ongoing phase I clinical trial

    A vaccine targeting angiomotin induces an antibody response which alters tumor vessel permeability and hampers the growth of established tumors

    Get PDF
    Angiomotin (Amot) is one of several identified angiostatin receptors expressed by the endothelia of angiogenic tissues. We have shown that a DNA vaccine targeting Amot overcome immune tolerance and induce an antibody response that hampers the progression of incipient tumors. Following our observation of increased Amot expression on tumor endothelia concomitant with the progression from pre-neoplastic lesions to full-fledged carcinoma, we evaluated the effect of anti-Amot vaccination on clinically evident tumors. Electroporation of plasmid coding for the human Amot (pAmot) significantly delayed the progression both of autochthonous tumors in cancer prone BALB-neuT and PyMT genetically engineered mice and transplantable TUBO tumor in wild-type BALB/c mice. The intensity of the inhibition directly correlated with the titer of anti-Amot antibodies induced by the vaccine. Tumor inhibition was associated with an increase of vessels diameter with the formation of lacunar spaces, increase in vessel permeability, massive tumor perivascular necrosis and an effective epitope spreading that induces an immune response against other tumor associated antigens. Greater tumor vessel permeability also markedly enhances the antitumor effect of doxorubicin. These data provide a rationale for the development of novel anticancer treatments based on anti-Amot vaccination in conjunction with chemotherapy regimens. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10456-012-9263-3) contains supplementary material, which is available to authorized users

    Triggering CD40 on endothelial cells contributes to tumor growth

    Get PDF
    Inflammatory cells can either promote or inhibit tumor growth. Here we studied whether CD40, a key molecule for adaptive immune response, has any role in mammary carcinogenesis of BALB/NeuT transgenic tumor-prone mice. We transferred the HER2/neu oncogene into CD40-null background to obtain the CD40-KO/NeuT strain. CD40-KO/NeuT mice showed delayed tumor onset and reduced tumor multiplicity. BM (BM) transplantation experiments excluded a role of BM-derived cells in the reduced tumorigenicity associated with CD40 deficiency. Rather, CD40 expressed by endothelial cells (ECs) takes part to the angiogenic process. Accordingly, large vessels, well organized around the tumor lobular structures, characterize BALB/NeuT tumors, whereas tiny numerous vessels with scarce extracellular matrix are dispersed in the parenchyma of poorly organized CD40-KO/NeuT tumors

    Vaccines against human HER2 prevent mammary carcinoma in mice transgenic for human HER2

    Get PDF
    INTRODUCTION: The availability of mice transgenic for the human HER2 gene (huHER2) and prone to the development of HER2-driven mammary carcinogenesis (referred to as FVB-huHER2 mice) prompted us to study active immunopreventive strategies targeting the human HER2 molecule in a tolerant host. METHODS: FVB-huHER2 were vaccinated with either IL-12-adjuvanted human HER2-positive cancer cells or DNA vaccine carrying chimeric human-rat HER2 sequences. Onset and number of mammary tumors were recorded to evaluate vaccine potency. Mice sera were collected and passively transferred to xenograft-bearing mice to assess their antitumor efficacy. RESULTS: Both cell and DNA vaccines significantly delayed tumor onset, leading to about 65% tumor-free mice at 70 weeks, whereas mock-vaccinated FVB-huHER2 controls developed mammary tumors at a median age of 45 weeks. In the DNA vaccinated group, 65% of mice were still tumor-free at about 90 weeks of age. The number of mammary tumors per mouse was also significantly reduced in vaccinated mice. Vaccines broke the immunological tolerance to the huHER2 transgene, inducing both humoral and cytokine responses. The DNA vaccine mainly induced a high and sustained level of anti-huHER2 antibodies, the cell vaccine also elicited interferon (IFN)-gamma production. Sera of DNA-vaccinated mice transferred to xenograft-carrying mice significantly inhibited the growth of human HER2-positive cancer cells. CONCLUSIONS: Anti-huHER2 antibodies elicited in the tolerant host exert antitumoral activity
    corecore