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1. Introduction

Prostate cancer (PCa)is the most frequent malignant neoplasia in men. The number of cases
has continuously increased over the past decades, partly due to the higher life expectancy.
Additional factors are the high caloric diet and lack of physical exercise, typically seen in the
Western countries. Notably, up to 40% of cancer incidents are preventable by consuming a
healthy diet, regular physical activity, and maintenance of optimum body weight, and more
than 20% by consuming vegetables and fruits. PCa represents an ideal candidate disease for
chemoprevention. It is typically diagnosed in elderly men and even a modest delay in the
neoplastic development could result in substantial reduction in the incidence of the clinical‐
ly detectable disease.In this chapter we will review the history, the development, and the
applications of some of the most common animal models of PCa,and we will discuss of the
role of animal models in translational research.

2. Body

Prostate cancer (PCa) is the most common non-cutaneous malignant neoplasm in men in
Western  countries,  responsible  for  the  deaths  of  approximately  30,000  and  85,000  men
per  year  in  the  United States  and Europe,  respectively  [1,2].The  number  of  cases  is  in‐
creasing rapidly in step with the growing number of men >50 worldwide, strategies for
the prevention of PCa and its progression are urgently required. Since studies of chemo‐
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preventive agents  in  humans are  hampered by the long latency period and challenging
epidemiological  problems,  reliable  preclinical  models  can  be  useful  to  overcome  these
problems.  Early  prostate  tumorigenesis  is  apparently  characterised  by  dysplasia  that
starts  with proliferative  inflammatory atrophy as  the  prelude to  low-grade Prostatic  In‐
traepithelial Neoplasia (PIN), high-grade PIN, primary cancer, metastatic cancer, and hor‐
mone-refractory  cancer.  During  this  progression,  genetic  damage  accumulates  within
cancer cells  [3,4].  Animal modelling has made a significant  contribution to the study of
prostate development and disease. Identification of the molecular features of PCa patho‐
genesis  and  progression  could  be  greatly  facilitated  by  laboratory  and  clinical  models.
However, a prerequisite for the elaboration of useful models is a better understanding of
the molecular characteristics  of  human PCa.  This  puzzle,  in addition to the well-known
inter- and intra-individual heterogeneity of the disease itself and its multi-faceted nature,
has necessitated the development of several complementary model systems. The most ef‐
fective animal models will  be those that most closely mimic the phenotypic and genetic
changes  accompanying  the  progression  of  the  human  disease.  Systems  shown  to  be
promising include the dog, the rat,  the human xenograft,  and the genetically manipulat‐
ed mouse.  They have been widely  employed to  test  preventive  regimens,  combinations
of  chemopreventive  agents  and/or  drugs,  cancer  vaccines,  and  targeted  treatments
[5-12].This paper reviews the history, development, and applications of some of the most
common animal models, and discusses their pros and cons in translational research.

3. Canine models

The dog is the animal known to commonly develop high-grade PIN and PCa spontaneously
in a human-like manner [13]. The many similarities between the canine and the human form
include the morphologic and phenotypic heterogeneity of the tumoral lesions, the age-de‐
pendency of tumor occurrence, and the propensity to metastasize to bones in an osteoblastic
manner [14,15]. Androgen-dependency, on the other hand, is ruled out by a similar inci‐
dence in castrated animals [15], while a relatively long latency, the low incidence of sponta‐
neous disease, the impracticability of genetic manipulation, and the high expense of
maintaining dog colonies [16,17] are other limitations of canine systems.

4. Rat models

Spontaneous PCa is sometimes observed in some strains of rats [18]. The Dunning model
[19] is the most popular. The original R-3327 tumor arose spontaneously in an inbred Co‐
penhagen rat, and was translated into a syngenic Copenhagen x Fisher F1 rat. It is a slow
growing, well differentiated and non-metastatic form. Several sublines with different char‐
acteristics mimicking some aspects of the human disease have since been developed [20-23].
Copenhagen and Wistar rats also develop a wide range of PCa phenotypes [24,25]. This var‐
iability, however, coupled with the rarity and long latency of these tumors, and their lack of
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metastases, bar the realistic employment of such models [12], though the recent elaboration
of knockout methods [26-28] indicates that greater use could be made of genetically engi‐
neered rats in the future [29].

5. Xenograft models

In immunodeficient nude mice tumors grow after injection of cancer cells or xenograft im‐
plantation with no evidence of a graft-versus-host response. In function of the number of
cells injected, or the size of the xenograft, the tumor will develop over 1–8 weeks, 1–4
months, or longer, and its response to treatment can be studied [30]. By comparison with in
vitro studies, this approach offers several advantages, especially a 3D structure complete
with tumor-induced angiogenesis, hormonal, paracrine/autocrine factors, and metastasis
[12]. Xenografting of human PCa began in the 1970s [31]. Thereafter several cell lines that
displayed different PCa phenotypes when injected into athymic nude mice have been devel‐
oped [32,33]. This model has been used to show the ability of tumor xenografts to metasta‐
size to the lymph node and bone, the two most common human sites [34].

Mice with an autosomal recessive Severe Combined Immuno Deficiency mutation (SCID
mice) were identified in 1983 [35]. This mutation results in a lack of T- and B-lymphocyte
function. However, normal natural killer (NK) cells and myeloid function are present, and
in some SCID mice, some B and T cells are still present [36]. In this model subcutaneous in‐
jection of HER2/neu overexpressing human CLNCaP cells has shown that HER2/neu indu‐
ces androgen-independent tumor growth through modulation of the androgen receptor
signalling pathway[37].

In 1995, the features of this model were improved by crossing SCID mice with nonobese dia‐
betic (NOD) mice, which lack in NK cells, antigen-presenting cells, and circulating comple‐
ment [38]. NOD-SCID mice accepted foreign tissue more successfully and were more
immunodeficient than SCID mice. This strain has been used to elaborate a model for ortho‐
topic implantation of PC-3 and DU145 cells with a tumor take efficacy of >80% for both lines
[39]. Some xenograft models result in metastasis to bone after intracardiac injection of bone
cells that probably survive in a niche whose microenvironment is optimal for their seeding
and growth. However intracardiac injection is not an ideal procedure and attention has thus
been focused on xenografts to orthotopic sites such as the prostate. The success rates depend
on the host strain and the use of hormones or Matrigel to provide adequate growth factors
and a scaffold for cell growth [40-42].

The immunodeficiency mouse model has been further improved by crossing NOD-SCID
mice with interleukin-2 receptor gamma null mice (NOG/NSG mice). These long-living mice
(median 90 weeks) totally lack B, T, and NK cell activities, and cytokine signaling, together
with no age-related “leakiness”. They have a higher xenograft success rate and are more ef‐
fective than other models, particularly in long-term studies involving prostate and non pros‐
tate cancer cells [43-45].

Natural Compounds, Antioxidant and Antiandrogens in the Prevention of Prostate Cancer: In vivo Evidences...
http://dx.doi.org/10.5772/45948

379



For preclinical prostate studies, most laboratories employ human PCa cell lines xenograft‐
ed in mice. Many excellent reviews of the characteristics of these lines have been publish‐
ed [46-50]. The most widely used, each with thousands of studies published according to
PubMed, are the classic three lines PC-3, LNCaP, and DU145, while each of the other lines
has less than 200 citations [8]. These cell lines do not represent the steps of PCa progres‐
sion. For example,  almost all  cell  lines,  including the most popular,  were obtained from
metastatic  deposits:  PC-3  from bone,  LNCaP from lymph node,  and DU145 from dural
metastasis. In addition, PC-3 and DU145 are androgen receptor (AR) negative and LNCaP
expresses a mutated AR. Again, cell lines, and their sublines in particular, are not fully ge‐
netically, functionally and phenotypically characterized, nor is there a method for stand‐
ardization [8,46-48].

6. Transgenic mouse models

The last ten years have witnessed a remarkable shift in animal-based cancer research from
xenograftedtumor to transgenic models since it is believed that they will recapitulate the
complete course of carcinogenesis more accurately[48].This assumption stems from the rec‐
ognition of several advantages that transgenic models offer when compared to xenograft
systems. Among these are that the process of carcinogenesis begins with normal cells, pro‐
gresses through distinct genetic and histological stages, occurs in an immuno-competent
host and in its own cellular microenvironment, and that metastasis can occur along routes
and to sites relevant to the clinical disease. A perhaps unrecognized attribute lies in the fact
that, because the disease is not initiated by human action but by a genetic program that
passes through the germline, the disease process is ‘‘reset’’ each generation. Statistically, the
progression of a transgenic model of cancer should therefore be precisely recapitulated
across time and between colonies. Given appropriate record keeping and data analysis, this
feature should allow epidemiological- style investigations of great statistical power, free
from both the mathematical noise of genetic and environmental variation, and from many of
the economic and ethical constraints of human medicine.

Genetically engineered mouse (GEM) models have been utilized to identify pathways in‐
volved in carcinogenesis and investigate the role of particular gene mutations/deletions, and
validate key genes as therapeutic targets. These models have been widely employed to test
preventive regimens, combinations of chemopreventive agents and/or drugs, cancer vac‐
cines, and targeted PCa treatments [5-12]. To mimic the human disease, GEMs could be gen‐
erated through several mechanisms, such as overexpression or activation of oncogenes,
elimination of target suppressor genes (Knock-outs), or generating dominant negative pro‐
teins that disrupt the function of regulatory genes.

The methods initially reported for genetic mouse modification involved the introduction of
DNA constructs designed to induce the expression of proteins under the control of strong
tissue-specific promoters, such as probasin and PSA. Simian virus 40 (SV40) large T antigens
(Tag) were widely used because of their transforming ability. They interact with and sup‐
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press the tumor suppressor protein p53 and retinoblastoma [51,52]. In addition, the small t
antigen interacts with the serine/threonine-specific protein phosphatase 2α to induce trans‐
formation [53].

The first model involving the expression of SV40 tumor antigens to develop PCa in the
mouse was the C3(1)-Tag model[54].Targeting the Tag expression to the prostate was ach‐
ieved by using a region of the C3 (1) gene, the rat prostatic steroid binding protein gene.
Most C3(1)-Tag mice developed PIN after about eight weeks of age. Invasive adenocarcino‐
mas followed after 28 weeks in about 40%. These tumors rarely metastasized (<4%), and al‐
ways to the lungs. However, SV 40 expression was also detected in the mammary and
salivary gland, while all females develop mammary intraepithelial neoplasia that may prog‐
ress to mammary carcinomas[55].More effective prostate targeting was obtained in later
models. Relatively few studies have used the C3 (1)/Tag model.

The transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse [56,57] is the best
known and most widely used PCa model because it closely mimics the human disease.In
this model, expression of both large and small SV40 early genes (T and t antigen, Tag) are
driven by the prostate-specific promoter probasin that leads to cell transformation within
the prostate. In this model, Tag are under the control of the minimal rat probasin –426/+C28
fragment. All male TRAMP mice develop PCa spontaneously: as in humans, they develop
PIN, and well- or moderately- differentiated adenocarcinomas (between 10 and 20 weeks of
age) and undifferentiated carcinomas (expressing or not AR) as well as phyllode tumors in
the seminal vesicles [58,59]. Most adenocarcinomas arose in the dorsolateral lobe, which is
considered most analogous to the peripheral zone where the human disease originates [10].
TRAMP was the first mouse model to display distant organ metastases, albeit rarely to the
skeleton. Metastatic progression can be observed after 28 weeks of age, when almost all mice
display lymphatic and >60% lung metastases from AR-, poorly differentiated (PD) tumors
that constitute the main “lethal phenotype” in the TRAMP mouse on account of their fast
growth and consequent acute renal damage due to compression, and also because they are
the source of distant metastases and systemic cachexia [60]. These phenomena can also oc‐
cur in the absence of other physiologic sequelae of metastatic disease [61]. An issue with the
TRAMP model is that its most frequent lethal and metastatic malignancy (i.e. the PD tumor),
has been reported to be of neuroendocrine nature and origin, while the simultaneous loss of
p53 and Rb could increase susceptibility to neuroendocrine cancer [62-64].

The TRAMP mouse has become a popular preclinical model for studying chemoprevention/
treatment of PCa, and elucidation of the antitumorigenic effects of many classes of chemo‐
preventive/therapeutic regimens, including anti-androgen, anti-estrogen, anti-angiogenic,
ornithine decarboxylase inhibitors, green tea polyphenols, COX-2 inhibitors, phytoestro‐
gens, retinoic acid, grape seed extract, flavonolignans, etc (Table 1).This model enables com‐
parison of the efficacy of treatments. A significant decrease of incidence and a delay of
tumor progression was observed following anti angiogenic treatment (endostatin and an‐
giostatin gene therapy), and lycopene and tomato supplementation. Other promising anti-
oxidant agents include green tea, soy, resveratrol, crucifers, curcumin, tocotrienols,
triterpenoids and methyl-selenium.
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Regimen Compound Reference Year

Anti-androgen Flutamide 108 2000

Ornithine decarboxylase inhibition alpha-difluoromethylornithine 109 2000

Green tea Polyphenolic extract 110 2001

Soy Genistein 111 2001

Anti-estrogen Toremifene 112 2002

Anti-inflammatory Celecoxib 113 2004

Anti-inflammatory Celecoxib, exisulind 114 2004

Soy Genistein 115 2004

Differentiative, antiangiogenic Retinoic acid 116 2004

Green tea Polyphenolic extract 117 2004

Green tea Epigallocatechin-3-gallate (EGCG) 118 2004

Green tea Polyphenolic extract 119 2004

Green tea Polyphenolic extract 120 2005

Anti-inflammatory Etodolac 121 2005

Block of the α1-adrenergic receptors Doxazosin 122 2005

Rye Bran 123 2005

Soy Genistein 124 2005

Anti-inflammatory Celecoxib 125 2006

Anti-oxidative Spinach extract, EGCG, acetylcysteine 126 2006

DNA methyltransferase inhibition 5-aza-2’-deoxycytidine 127 2006

Estrogen metabolite 2-Methoxyestradiol 128 2006

Grape seeds Polyphenolicextracy 129 2007

Anti-β-Catenin Apigenin 130 2007

Soy Genistein 131 2007

Anti-angiogenic Endostatin and angiostatin gene therapy 132 2007

Green tea Epigallocatechin-3-gallate (EGCG) 133 2007

Milk thistle(Silybummarianum) seeds Silibin 134 2007

Combined immunoprophylaxis Allogeneic cells and recombinant IL-12 135 2007

Saw palmetto Liposterolic extract 136 2007

Grape Resveratrol 137 2007

Plant flavonoid Apigenin 138 2007

Milk thistle(Silybummarianum) seeds Silibin 139 2008

Milk thistle(Silybummarianum) seeds Silibin 140 2008
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Regimen Compound Reference Year

Cruciferous vegetables Sulphoraphane 141 2009

Green tea Polyphenolic extract 142 2009

Milk thistle(Silybummarianum) seeds Silibin 143 2009

Anti-oxidative γ-Tocopherol 144 2009

Systemic buffers 145 2012

Anti-oxidative γ-Tocopherol 146 2012

Anti-inflammatory Ursolic acid 147 2012

High-fat diet Whole walnuts 148 2012

Pomegranate Fruit exctract 149 2012

Plant flavonoid Apigenin 150 2012

Cancer therapy Docetaxel, Dexametasone, Octeotride 151 2012

Bitter melon Fruit exctract 152 2011

Diet Folate deficiency 153 2011

Anti-inflammatory Ursolic acid 154 2011

Anti-inflammatory + anti-hormonal Celecoxib, Hormone ablation 155 2011

Garlic Diallyltrisulfide 156 2011

Anti-oxidative Indolole-3-carbinole 157 2011

Anti-oxidative Whole tomatoes 158 2010

Anti-oxidative Lycopene beadlet, tomato paste 159 2010

Diet Western diet 160 2010

Anti-oxidative Seleniun 161 2011

Triterpenoids Synthetic CDDO 162 2011

Mitocondrial Hsp90 inhibition 163 2011

Arginine metabolism Modulators 164 2011

Anti-oxidative Methyl-seleniun 165 2009

Hormonal Methoxyestradiol 166 2009

Interferon-alpha 167 2009

3,3’-Diindolylmethane 168 2010

Anti-oxidative Mixed tocotrienols 169 2010

Diet Zinc 170 2010

Cancer therapy Treatment targeting HIF-a and Stat3 171 2011

Crucifers Indole-3-carbinol 172 2011

Table 1. Preventive/Therapeutic Regimens Tested in the TRAMP Model of Prostate Cancer
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To increase the transgene expression beyond that obtained with the minima probasin pro‐
moter, as in the TRAMP mouse, an 11.5 kb 5’ flanking fragment of the prostate-specific pro‐
basin promoter (large probasin) has since been isolated [65], and used to direct large T-
antigen expression to the dorsolateral and ventral prostate (Lady mouse model). The second
key difference in this model is that the large probasin promoter was linked to a deletion mu‐
tant of the SV40 T-antigen that expressed only the large T-antigen [66,67]. The Lady model is
advantageous because expression is high, but the PCa progression is less aggressive, begin‐
ning with low to high-grade PIN and proceeding to carcinoma with neuroendocrine fea‐
tures. However, metastatic progression was not seen [5,67]. Several other trangenic mouse
models have been developed with or without the involvement of SV40 antigens and with
different strategies (reviewed in ref. [12]). In summary, while T antigen expression generally
induces castration-resistant, aggressive and metastatic PCas, often with a neuroendocrine
phenotype, the specific expression of other oncogenes in the prostate results in a mild phe‐
notype that rarely progresses to adenocarcinoma.

7. Knockout mice

7.1. Whole body models

The roles of genes significant in prostate carcinogenesis can also be studied in, whole-body
knockout models. Here, however, the gene involved is knocked out ubiquitously, and its
specific role in a given organ cannot be readily determined. Estrogen receptor b knockout
mice display hyperplastic foci in the prostate or even no pathological changes [68]. Deletion
of retinoic acid receptor γ determines squamous metaplasia of prostate and seminal vesicles,
but not carcinomas [69]. p27knockout mouse display prostatic hyperplasia histologically
similar to that observed in human BPH, but not PIN, and a pathogenetic role of p27 loss in
BPH development in both mice and humans has been suggested [70]. Inactivation of T
(phosphatase and tensin homolog deleted on chromosome 10) prevents activation of AKT
and apoptosis resulting in embryonic lethality. However, haploinsufficiency leads to early
stages (PIN) of prostatic carcinogenesis [71]. Double-knockout models in which loss of
PTEN is associated with loss of other tumor suppressors (p27, Nkx3.1, and p53), are charac‐
terized by more aggressive tumor phenotype.The highest stage of tumor progression was
adenocarcinoma (PTEN x p27 mouse) [72], lymph node metastases (PTEN x Nkx3.1 mouse)
[73], and high grade PIN (PTEN x p53 mouse) [74]. In addition, several mouse models with
up to 5 genetic hits demonstrated, as expected, the complexity of the events required for a
complete progression of prostatic tumors from low-grade PIN to metastatic disease (see re‐
view [75]).

7.2. Conditional models

The “old” (1979) [76] Cre-loxP system was used to produce mice with prostate-specific alter‐
ations. Cre is a recombinase that promotes specific genetic recombination in trans at loxP
sites. The Cre-loxP system was developed and used for genetic recombination first in yeast
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and later in mice [77,78]. Many genes knocked out with the whole body strategy were also
knocked out by using a conditional approach that results in higher prostate tumor severity.
As an example, tissue-specific deletion indicated that homozygous loss of prostatic PTEN
led to most stages of prostate tumor progression (metastatic disease) when compared to
whole-body haploinsufficiecy, where only PIN was present [79]. At present, the Cre-lox sys‐
tem is diffusely employed to generate mouse models characterized by cell-type-specific and
tissue-specific genetic modification (see recent review in ref. [12]). The probasin and the
prostate specific antigen (PSA) promoters were extensively utilized to induce targeted Cre
expression in the prostate. PB-Cre and PSA-Cre mice have been employed to delete the in‐
traprostatic expression of PTEN, Rb, p53, APC, IGF1 and PTEN, Nkx3, respectively.

E-Resources for mouse models of human cancer, including PCa, are also available online
(http://emice.nci.nih.gov/,http://cancermodels.nci.nih.gov/,andhttp://cancerimag‐
es.nci.nih.gov/).

8. Clinical trials

Mouse  models  have  significantly  contributed  to  our  understanding  of  PCa  biology
through their identification of new cancer genes and biomarkers, and their illustration of
the  molecular  and  cellular  mechanisms  underlying  tumor  initiation  and  progression.
They  have  also  been  employed  in  a  preclinical  setting  to  test  novel  preventive  and/or
therapeutic strategies [5,6,8-12,80]. Mice, in fact, offer several advantages. They are small,
relatively inexpensive, and reproduce rapidly with large litters. More importantly, techni‐
cal advances have facilitated the generation of defined genetic modifications that can also
be spatially controlled, to mimic human prostate carcinogenesis. In general, and perhaps
not surprisingly,  a variety of phenotypes are obtained depending on the specific geneti‐
cally  engineered  mouse  model,  but  none  exactly  mimics  the  human  disease.  Although
preclinical studies and the epidemiological evidence suggest that specific dietary compo‐
nents  or  nutritional  supplements  influence  overall  mortality  and/or  reduce  the  risk  of
PCa, randomized, controlled clinical trials provide high-quality evidence of benefit, no ef‐
fect, or even harm. Examples of ongoing clinical trials are reported in Table 2. In the last
ten years, several primary prevention trials have been reported (reviewed in ref. [11,81]).
Preventive  strategies  in  a  clinical  setting  have  focused  on  two  approaches:  antioxidant
regimens to reduce DNA damage and suppression of androgenic stimulation [82].  Since
a wealth of preclinical and epidemiologic data indicated that selenium and vitamin E re‐
duce  PCa,  these  compounds  were  evaluated  in  humans.  The  Nutritional  Prevention  of
Cancer (NPC) trial found a 63% reduction of PCa incidence (secondary endpoint) follow‐
ing the administration of selenized yeast [83]. The Alpha-Tocopherol Beta-Carotene Can‐
cer  prevention  study  (ATBC),  one  of  the  first  large  studies  (14,569  subjects  enrolled),
investigated  the  prevention  of  lung  cancer  among  male  smokers.  The  results  indicated
that beta carotene supplements increased the risk of lung cancer, rather than preventing
it,  and that  vitamin E had no effect  [84-86].  However,  a  significantly lower risk of  PCa
was  observed  for  participants  receiving  vitamin  E  alone.  The  NPC and ATBC findings
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underpinned  the  NCI-sponsored  selenium  and  vitamin  E  cancer  prevention  trial  (SE‐
LECT).  This  randomized 35,533 men into four groups:  (1)  selenium/placebo,  (2)  vitamin
E/placebo,  (3)  both  agents,  and  (4)  placebo  alone  [87].  At  a  mean  of  5.5  years  neither
agent reduced risk of  PCa.  However,  at  a  mean of  7  years and with an additional  per‐
son-year  of  follow-up,  men receiving  vitamin  E  alone  had  a  significantly  increased  the
risk of PCa (Hazard Ratio 1.17, 99% CI 1.004– 1.36, P  = 0.008) [88].  Does vitamin E pre‐
vent or promote cancer? More research on the biological activities of the forms and mix‐
tures of tocopherols (alpha, gamma, and delta), and their baseline serum levels should be
considered (analyses and discussion in ref. [81,89,90]).

The most promising agents for preventing PCa are probably the 5-alpha reductase inhibitors
(5-ARIs). Five-alpha reductase catalyzes the conversion of testosterone to the more active di‐
hydrotestosterone. The Prostate Cancer Prevention Trial (PCPT) and the Reduction by Du‐
tasteride of Prostate Cancer Events (REDUCE) Trial evaluated the activities of two 5-ARIs,
finasteride and dutasteride, respectively (reviewed in ref. [81,91]). 5-ARI use for 4-7 years re‐
duced the overall risk of biopsy-detectable PCa by 23-25%. All the prevented cases are either
low-grade (PCPT) or GS ≤3 + 4 = 7 prostatic carcinoma (REDUCE). It is unclear whether the
slightly increased risk of high-grade cancers in both trials is real or an artifact. In addition to
the risk of androgen-independent tumors, the side effects of 5-ARI such as neurodegenera‐
tion, osteoporosis, cardiovascular diseases, genitourinary dysfunctions, and hormonal disar‐
rangement limit their use as primary chemopreventive drugs [92-94].

Clinical translation has thus proved to be a general failure when viewed against the opti‐
mism aroused by preventive treatments (antioxidant, anti-hormonal, anti-inflammatory, an‐
ti-angiogenic etc agents) in the preclinical setting. It has been proposed that species-specific
differences, and differences in time of treatment intervention age, trial design enrolment cri‐
teria, genetic variation, and the choice, dose, and bioavailability of preventive/therapeutic
agents are lie behind for the discrepancy [11]. The most substantial challenge posed by
mouse models of PCa, as for other tumors, is their species-specific differences. The lifespan
of a mouse is 25-50 times shorter than that of humans, and mice are 3000 times smaller, with
consequent differences in pharmacokinetics [95,96]. Anatomically, the human prostate is a
single alobular organ with a central, a transitional, and a peripheral zone, whereas the mur‐
ine prostate comprises four paired lobes located around the urethra, namely the anterior (or
coagulating gland), dorsal, lateral, and ventral prostate. The dorsal and lateral lobes are
treated as one (the dorsolateral lobe) as they share a ductal system. This lobe has been de‐
scribed as the most similar to the human peripheral zone where most carcinomas arise
[97,98]. According to the Bar Harbor Pathology Panel consensus opinion, however, there is
no direct relationship between any mouse lobe and any of the human zones [58]. Histologi‐
cally, the mouse and the human prostate display similar cell types (secretory, basal and neu‐
roendocrine), but their ratio varies from one species to another [99,100]. Mice have fewer
basal cells and a discontinuous layer on the basal membrane, whereas in humans, this layer
is continuous between secretory cells and the basal membrane. Neuroendocrine cells, rare in
humans, are even more rare in mice. The human prostate is characterized by an abundant
fibromuscular stoma, whereas the murine gland has a small stromal component. Mice are
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susceptible to malignancies. By comparison with humans, however, they tend to have more
sarcomas and lymphomas and very few epithelial tumors, probably due to differences in
relative telomere activity [101-103]. Telomerase, mostly inactive in cells from adult humans,
is present in mouse cells, which can thus be transformed/immortalized more easily than
their human counterparts, and fewer genetic hits are required to bring about neoplastic
transformation in mice than in men. Inactivation of telomerase in the mouse model may be
necessary to more accurately recapitulate human cancer phenotypes [80,104].

Most  primary PCa prevention studies  used mice  with  an average age  of  4-8  weeks,  by
which time they are considered to have attained sexual maturity and are unlikely to have
sustained hormone-induced oxidative stress.  In  the mouse,  a  delay in the start  of  treat‐
ment results in a reduced or even no effect. Most human PCa prevention trials were con‐
ducted on men aged 50 or more. In addition, the agent dose in animals is 50-80% of the
maximally tolerated dose, whereas in humans lower doses may be required for bioethical
reasons. The excellent review of Pienta et al. (Prostate Cancer Model Working Group) of‐
fers a list of limitations of preclinical models that have hampered the translation of their
findings to human clinical trials [8].

Agent* Trial No. Type Institution Phase Status

Green tea NCT00685516 Therapy Jonsson Comprehensive Cancer

Center

II Recruiting

NCT00253643 Prevention Oregon Health and Science

University

Recruiting

NCT00003367 Therapy Memorial Sloan-Kettering Cancer

Center

III Active

NCT00676780 Basic science Louisiana State University Active II Active

NCT00744549 Therapy University Health Network, Toronto II Recruiting

Genistein NCT00546039 Basic science University Hospital, Aker Active II

NCT00005827 Therapy North Carolina University

LinebergerCenter

I Completed

NCT00058266 Therapy Robert H. Lurie Cancer Center II Active

NCT00584532 Therapy University of California, Davis II/III Completed

NCT00376948 Therapy Barbara Ann Karmanos Cancer

Institute

II Suspended

NCT00499408 Therapy Wake Forest University II Recruiting

Pomegranate NCT00413530 Therapy M. D. Anderson Cancer Center Recruiting

NCT00719030 Prevention University of California, Los Angeles Recruiting

NCT00732043 Prevention Radiant Research II Recruiting

NCT00731848 Therapy Radiant Research II Recruiting
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Agent* Trial No. Type Institution Phase Status

NCT00336934 Therapy Roll International Corporation III Recruiting

NCT00060086 Therapy Jonsson Comprehensive Cancer

Center

II Active

NCT00433797 Therapy University of Oslo I/II Recruiting

Lycopene NCT00042731 Therapy H. Lee Moffitt Cancer Center Completed

NCT00416325 Prevention University of Illinois I Completed

NCT00178113 PIN Prevention University of Pittsburgh I Completed

NCT00093561 Prevention University of Illinois Completed I Completed

NCT00450749 Therapy M. D. Anderson Cancer Center II Recruiting

NCT00006078 Prevention University of Illinois I Completed

NCT00322114 Prevention University of Illinois II Recruiting

NCT00402285 Therapy University of California San

Francisco

Active

NCT00450957 Prevention University of Illinois I Active

NCT00068731 Therapy North Central Cancer Treatment

Group

II Active

NCT00744549 Therapy University Health Network, Toronto II Recruiting

NCT00669656 Therapy Norris Comprehensive Cancer

Center

II Recruiting

n-3 poly NCT00458549 Therapy Dana-Farber Cancer Institute Recruiting

unsaturated

fatty acids

NCT00402285 Therapy California San Francisco Helen Diller

Center

Active

* Data from ref. [105]

Table 2. Clinical Trials of Preventive/Therapeutic Regimens for Prostate Cancer

9. Conclusions

Genetically engineered mouse models of PCa have paved the way to many important dis‐
coveries and helped to define the molecular events of prostate tumorigenesis. However, no
single model precisely recapitulates all the molecular or cellular features of the progression
of PCa from the normal gland to metastatic, hormone-refractory carcinoma, especially since
its early stages are not those of single-cell-type disease, but must be viewed as a complex
system of epithelial cells that display dysregulated growth within both a microenvironment
composed of many cells which support such growth, and the host macroenvironment with
its unique genotype and immune system. Further research is needed to better define these
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interactions, many of which are potential therapeutic targets. Several in vivo models can be
utilized to study specific components of tumor initiation and progression. Meaningful inter‐
pretation of their results, however, demands a full understanding of the properties and lim‐
its of each model, along with employment of the model most consonant with the subject to
be studied. Preclinical models have been poorly predictive of results in human studies be‐
cause of both their inadequacy and their inappropriate use leading to the designing of clini‐
cal trials that do not mirror the preclinical model testing [106]. However, the
chemoprevention field is particularly challenging since discrepancies have also been found
between initial findings in several trials, secondary analyses and epidemiologic data, and
subsequent randomized studies in humans [107]. These inconsistencies may reasonably be
supposed to stem from the fact that dietary agents may act long before the scheduled com‐
mencement of a chemoprevention trial. Since such trials need to find outcomes (cancers),
they invariably start with populations at higher risk of developing clinically detectable can‐
cer, namely middle-aged and older subjects. However, dietary elements may either have a
lifelong effect in their changes to the baseline risk for cancer or act at key points by priming
the pump for its future development. In either case, dietary chemoprevention might be pos‐
sible, but its indisputable demonstration in a trial would be highly unlikely. Do these dis‐
crepancies mean that all the preclinical and epidemiologic studies are wrong? It must
primarily be considered that the timing of such interventions is unclear. Their employment
in very high risk subjects, indeed, may actually be too late to significantly prevent cancer
formation. Future studies will require both the use of other models founded on our in‐
creased understanding of human cancer proteomic genetics and epigenetics to define the
very first steps in the progression of the disease and the ability of agents to impair or retard
it, and a better “translational approach” achieved through preclinical studies that utilize the
appropriate agent doses, and pharmacokinetic and pharmacodynamic parameters to take
into account the differences in metabolism between mice and humans, together with clinical
trials whose design takes account of how the preclinical testing was accomplished.
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