21 research outputs found

    First results of the CALICE SDHCAL technological prototype

    No full text
    see paper for full list of authorsInternational audienceThe CALICE Semi-Digital Hadronic Calorimeter (SDHCAL) prototype, built in 2011, was exposed to beams of hadrons, electrons and muons in two short periods in 2012 on two different beam lines of the CERN SPS. The prototype with its 48 active layers, made of Glass Resistive Plate Chambers and their embedded readout electronics, was run in triggerless and power-pulsing mode. The performance of the SDHCAL during the test beam was found to be very satisfactory with an efficiency exceeding 90% for almost all of the 48 active layers. A linear response (within 5%) and a good energy resolution are obtained for a large range of hadronic energies (5-80GeV) by applying appropriate calibration coefficients to the collected data for both the Digital (Binary) and the Semi-Digital (Multi-threshold) modes of the SDHCAL prototype. The Semi-Digital mode shows better performance at energies exceeding 30Ge

    Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications

    No full text
    Coherent elastic neutrino-nucleus scattering (CEν\nuNS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CEν\nuNS has long proven difficult to detect, since the deposited energy into the nucleus is \sim keV. In 2017, the COHERENT collaboration announced the detection of CEν\nuNS using a stopped-pion source with CsI detectors, followed up the detection of CEν\nuNS using an Ar target. The detection of CEν\nuNS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CEν\nuNS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CEν\nuNS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics

    Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications

    No full text
    Coherent elastic neutrino-nucleus scattering (CEν\nuNS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CEν\nuNS has long proven difficult to detect, since the deposited energy into the nucleus is \sim keV. In 2017, the COHERENT collaboration announced the detection of CEν\nuNS using a stopped-pion source with CsI detectors, followed up the detection of CEν\nuNS using an Ar target. The detection of CEν\nuNS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CEν\nuNS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CEν\nuNS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics

    Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications

    No full text
    Coherent elastic neutrino-nucleus scattering (CEν\nuNS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CEν\nuNS has long proven difficult to detect, since the deposited energy into the nucleus is \sim keV. In 2017, the COHERENT collaboration announced the detection of CEν\nuNS using a stopped-pion source with CsI detectors, followed up the detection of CEν\nuNS using an Ar target. The detection of CEν\nuNS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CEν\nuNS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CEν\nuNS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics

    Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications

    Get PDF
    Coherent elastic neutrino-nucleus scattering (CEν\nuNS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CEν\nuNS has long proven difficult to detect, since the deposited energy into the nucleus is \sim keV. In 2017, the COHERENT collaboration announced the detection of CEν\nuNS using a stopped-pion source with CsI detectors, followed up the detection of CEν\nuNS using an Ar target. The detection of CEν\nuNS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CEν\nuNS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CEν\nuNS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics

    Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications

    No full text
    Coherent elastic neutrino-nucleus scattering (CEν\nuNS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CEν\nuNS has long proven difficult to detect, since the deposited energy into the nucleus is \sim keV. In 2017, the COHERENT collaboration announced the detection of CEν\nuNS using a stopped-pion source with CsI detectors, followed up the detection of CEν\nuNS using an Ar target. The detection of CEν\nuNS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CEν\nuNS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CEν\nuNS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics

    Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications

    No full text
    Coherent elastic neutrino-nucleus scattering (CEν\nuNS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CEν\nuNS has long proven difficult to detect, since the deposited energy into the nucleus is \sim keV. In 2017, the COHERENT collaboration announced the detection of CEν\nuNS using a stopped-pion source with CsI detectors, followed up the detection of CEν\nuNS using an Ar target. The detection of CEν\nuNS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CEν\nuNS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CEν\nuNS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics

    Calorimetry for Lepton Collider Experiments – CALICE results and activities

    No full text
    The CALICE collaboration conducts calorimeter R&D for highly granular calorimeters, mainly for their application in detectors for a future lepton collider at the TeV scale. The activities ranges from generic R&D with small devices up to extensive beam tests with prototypes comprising up to several 100000 calorimeter cells. CALICE has validated the performance of particle flow algorithms with test beam data and delivers the proof of principle that highly granular calorimeters can be built, operated and understood. The successes achieved in the past years allows the step from prototypes to calorimeter systems for particle physics detectors to be addressed

    CALICE Report to the DESY Physics Research Committee

    No full text
    We present an overview of the CALICE activities on calorimeter development for a future linear collider. We report on test beam analysis results, the status of prototype development and future plans.We present an overview of the CALICE activities on calorimeter development for a future linear collider. We report on test beam analysis results, the status of prototype development and future plans
    corecore