321 research outputs found

    Inertial manifolds for Burgers' original model system of turbulence

    Get PDF
    AbstractThe existence of inertial manifolds for Burgers' original mathematical model system of turbulence is investigated. The system consists of two equations and enjoys the characteristic quantity: the Reynolds number. Our object in this article is to express the existence in terms of this Reynolds number. The difficulty of first order derivatives is circumvented by the method originally due to M. Kwak

    Spin dynamics of a one-dimensional spin-1/2 fully anisotropic Ising-like antiferromagnet in a transverse magnetic field

    Full text link
    We consider the one-dimensional Ising-like fully anisotropic S=1/2 Heisenberg antiferromagnetic Hamiltonian and study the dynamics of domain wall excitations in the presence of transverse magnetic field hxh_x. We obtain dynamical spin correlation functions along the magnetic field Sxx(q,ω)S^{xx}(q,\omega) and perpendicular to it Syy(q,ω)S^{yy}(q,\omega). It is shown that the line shapes of Sxx(q,ω)S^{xx}(q,\omega) and Syy(q,ω)S^{yy}(q,\omega) are purely symmetric at the zone-boundary. It is observed in Syy(q,ω)S^{yy}(q,\omega) for π/2<q<π\pi/2<q<\pi that the spectral weight moves toward low energy side with the increase of hxh_x. This model is applicable to study the spin dynamics of CsCoCl3_3 in the presence of weak interchain interactions.Comment: 19 pages, LaTeX, 12 eps figure

    Dynamical Structure Factors of the S=1/2 Bond-Alternating Spin Chain with a Next-Nearest-Neighbor Interaction in Magnetic Fields

    Full text link
    The dynamical structure factor of the S=1/2 bond-alternating spin chain with a next-nearest-neighbor interaction in magnetic field is investigated using the continued fraction method based on the Lanczos algorithm. When the plateau exists on the magnetization curve, the longitudinal dynamical structure factor shows a large intensity with a periodic dispersion relation, while the transverse one shows a large intensity with an almost dispersionless mode. The periodicity and the amplitude of the dispersion relation in the longitudinal dynamical structure factor are sensitive to the coupling constants. The dynamical structure factor of the S=1/2 two-leg ladder in magnetic field is also calculated in the strong interchain-coupling regime. The dynamical structure factor shows gapless or gapful behavior depending on the wave vector along the rung.Comment: 8 pages, 4 figures, to appear in Journal of the Physical Society of Japan, vol. 69, no. 10, (2000

    Guardians Ad Litem as Surrogate Parents: Implication for Role Definition and Confidentiality

    Get PDF
    SALMON (Scalable Ab-initio Light–Mattersimulator for Optics and Nanoscience, http://salmon-tddft.jp) is a software package for the simulation of electron dynamics and optical properties of molecules, nanostructures, and crystalline solids based on first-principles time-dependent density functional theory. The core part of the software is the real-time, real-space calculation of the electron dynamics induced in molecules and solids by an external electric field solving the time-dependent Kohn–Sham equation. Using a weak instantaneous perturbing field, linear response properties such as polarizabilities and photoabsorptions in isolated systems and dielectric functions in periodic systems are determined. Using an optical laser pulse, the ultrafast electronic response that may be highly nonlinear in the field strength is investigated in time domain. The propagation of the laser pulse in bulk solids and thin films can also be included in the simulation via coupling the electron dynamics in many microscopic unit cells using Maxwell’s equations describing the time evolution of the electromagnetic fields. The code is efficiently parallelized so that it may describe the electron dynamics in large systems including up to a few thousand atoms. The present paper provides an overview of the capabilities of the software package showing several sample calculations. Program summary Program Title: SALMON: Scalable Ab-initio Light–Matter simulator for Optics and Nanoscience Program Files doi:http://dx.doi.org/10.17632/8pm5znxtsb.1 Licensing provisions: Apache-2.0 Programming language: Fortran 2003 Nature of problem: Electron dynamics in molecules, nanostructures, and crystalline solids induced by an external electric field is calculated based on first-principles time-dependent density functional theory. Using a weak impulsive field, linear optical properties such as polarizabilities, photoabsorptions, and dielectric functions are extracted. Using an optical laser pulse, the ultrafast electronic response that may be highly nonlinear with respect to the exciting field strength is described as well. The propagation of the laser pulse in bulk solids and thin films is considered by coupling the electron dynamics in many microscopic unit cells using Maxwell’s equations describing the time evolution of the electromagnetic field. Solution method: Electron dynamics is calculated by solving the time-dependent Kohn–Sham equation in real time and real space. For this, the electronic orbitals are discretized on a uniform Cartesian grid in three dimensions. Norm-conserving pseudopotentials are used to account for the interactions between the valence electrons and the ionic cores. Grid spacings in real space and time, typically 0.02 nm and 1 as respectively, determine the spatial and temporal resolutions of the simulation results. In most calculations, the ground state is first calculated by solving the static Kohn–Sham equation, in order to prepare the initial conditions. The orbitals are evolved in time with an explicit integration algorithm such as a truncated Taylor expansion of the evolution operator, together with a predictor–corrector step when necessary. For the propagation of the laser pulse in a bulk solid, Maxwell’s equations are solved using a finite-difference scheme. By this, the electric field of the laser pulse and the electron dynamics in many microscopic unit cells of the crystalline solid are coupled in a multiscale framework

    Motion of Bound Domain Walls in a Spin Ladder

    Full text link
    The elementary excitation spectrum of the spin-12\frac{1}{2} antiferromagnetic (AFM) Heisenberg chain is described in terms of a pair of freely propagating spinons. In the case of the Ising-like Heisenberg Hamiltonian spinons can be interpreted as domain walls (DWs) separating degenerate ground states. In dimension d>1d>1, the issue of spinons as elementary excitations is still unsettled. In this paper, we study two spin-12\frac{1}{2} AFM ladder models in which the individual chains are described by the Ising-like Heisenberg Hamiltonian. The rung exchange interactions are assumed to be pure Ising-type in one case and Ising-like Heisenberg in the other. Using the low-energy effective Hamiltonian approach in a perturbative formulation, we show that the spinons are coupled in bound pairs. In the first model, the bound pairs are delocalized due to a four-spin ring exchange term in the effective Hamiltonian. The appropriate dynamic structure factor is calculated and the associated lineshape is found to be almost symmetric in contrast to the 1d case. In the case of the second model, the bound pair of spinons lowers its kinetic energy by propagating between chains. The results obtained are consistent with recent theoretical studies and experimental observations on ladder-like materials.Comment: 12 pages, 7 figure

    Dark Energy and Extending the Geodesic Equations of Motion: Its Construction and Experimental Constraints

    Get PDF
    With the discovery of Dark Energy, ΛDE\Lambda_{DE}, there is now a universal length scale, DE=c/(ΛDEG)1/2\ell_{DE}=c/(\Lambda_{DE} G)^{1/2}, associated with the universe that allows for an extension of the geodesic equations of motion. In this paper, we will study a specific class of such extensions, and show that contrary to expectations, they are not automatically ruled out by either theoretical considerations or experimental constraints. In particular, we show that while these extensions affect the motion of massive particles, the motion of massless particles are not changed; such phenomena as gravitational lensing remain unchanged. We also show that these extensions do not violate the equivalence principal, and that because DE=14010820800\ell_{DE}=14010^{800}_{820} Mpc, a specific choice of this extension can be made so that effects of this extension are not be measurable either from terrestrial experiments, or through observations of the motion of solar system bodies. A lower bound for the only parameter used in this extension is set.Comment: 19 pages. This is the published version of the first half of arXiv:0711.3124v2 with corrections include

    Thermodynamic Properties and Elementary Excitations in Quantum Sine-Gordon Spin System KCuGaF6

    Full text link
    Thermodynamic properties and elementary excitations in S=1/2S=1/2 one-dimensional Heisenberg antiferromagnet KCuGaF6_6 were investigated by magnetic susceptibility, specific heat and ESR measurements. Due to the Dzyaloshinsky-Moriya interaction with alternating DD-vectors and/or the staggered gg-tensor, the staggered magnetic field is induced when subjected to external magnetic field. Specific heat in magnetic field clearly shows the formation of excitation gap, which is attributed to the staggered magnetic field. The specific heat data was analyzed on the basis of the quantum sine-Gordon (SG) model. We observed many ESR modes including one soliton and three breather excitations characteristic of the quantum SG model.Comment: 4 pages, 5 figures, to appear in J. Phys. Soc. Jpn., vol. 76, no.

    Electron Spin Resonance in S=1/2 antiferromagnetic chains

    Full text link
    A systematic field-theory approach to Electron Spin Resonance (ESR) in the S=1/2S=1/2 quantum antiferromagnetic chain at low temperature TT (compared to the exchange coupling JJ) is developed. In particular, effects of a transverse staggered field hh and an exchange anisotropy (including a dipolar interaction) δ\delta on the ESR lineshape are discussed. In the lowest order of perturbation theory, the linewidth is given as Jh2/T2\propto Jh^2/T^2 and (δ/J)2T\propto (\delta/J)^2 T, respectively. In the case of a transverse staggered field, the perturbative expansion diverges at lower temperature; non-perturbative effects at very low temperature are discussed using exact results on the sine-Gordon field theory. We also compare our field-theory results with the predictions of Kubo-Tomita theory for the high-temperature regime, and discuss the crossover between the two regimes. It is argued that a naive application of the standard Kubo-Tomita theory to the Dzyaloshinskii-Moriya interaction gives an incorrect result. A rigorous and exact identity on the polarization dependence is derived for certain class of anisotropy, and compared with the field-theory results.Comment: 53 pages in REVTEX, 7 figures in EPS included; revised version with missing references and correction

    Ground states of a one-dimensional lattice-gas model with an infinite range nonconvex interaction. A numerical study

    Full text link
    We consider a lattice-gas model with an infinite range pairwise noncovex interaction. It might be relevant, for example, for adsorption of alkaline elements on W(112) and Mo(112). We study a competition between the effective dipole-dipole and indirect interactions. The resulting ground state phase diagrams are analysed (numerically) in detail. We have found that for some model parameters the phase diagrams contain a region dominated by several phases only with periods up to nine lattice constants. The remaining phase diagrams reveal a complex structure of usually long periodic phases. We also discuss a possible role of surace states in phase transitions.Comment: 16 pages, 5 Postscript figures; Physical Review B15 (15 August 1996), in pres

    Desempenho do quiabeiro consorciado com adubos verdes eretos de porte baixo em dois sistemas de cultivo.

    Get PDF
    Com o objetivo de avaliar o cultivo intercalar de adubos verdes eretos e de porte baixo na cultura do quiabeiro, foram conduzidos dois experimentos, sendo um em cultivo convencional em Monte Alegre do Sul e outro em cultivo orgânico em São Roque-SP, de fevereiro a julho de 2008 e de dezembro de 2008 a junho de 2009, respectivamente
    corecore