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Abstract-The existence of inertial manifolds for Burgers’ original mathematical model system 
of turbulence is investigated. The system consists of two equations and enjoys the characteristic 
quantity: the Reynolds number. Our object in this article is to express the existence in terms of this 
Reynolds number. The difficulty of first order derivatives is circumvented by the method originally 
due to M. Kwak. 
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SECTION 1 

For the study of the long time dynamics of dissipative nonlinear partial equations, the theory 

of inertial manifolds has recently called considerable attention. After the pioneering work of 

C. Foias, G.-R. Sell and R. Temam [l], many authors discussed this topic and much progress has 

been made. See, for instance, [2-131 and the references therein. 

Let H be a Hilbert space and {S(t)} t>o the semigroup operators associated to the equation 

under consideration. Then, we recall that a set M c H is an inertial manifold for the equation 

if 

(1) M is a finite-dimensional Lipschitz manifold; 

(2) S(t)M c M, for all t > 0; 

(3) M attracts all the orbits with exponential rate. 

When M exists, we see that the long time dynamics of the system can be described by the 

finite-dimensional dynamics on M, and in particular, M contains the global attractor. 

In this note, we deal with the existence of inertial manifolds for the following physical system 

derived by J. M. Burgers [14] as a model study of turbulent fluid motion: 

in (2, t) E [O,L] x R+, 

with 

v(0,t) = v(L,t) = 0, for t 2 0, 
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where U and v denote velocities corresponding to mean and turbulent motion, respectively. 
P and Y represent the external force and a kinetic viscosity, respectively. U is independent of the 
space variable, and note that when U = 0, i.e., when the mean motion is 0, the second equation 
of the system reduces to the famous Burgers equation. The system (1) itself, on the other hand, 
enjoys the characteristic quantity: Reynolds number Re given by 

Recently Eden [ 151 d iscussed the system (1) and established a bound for the dimension of the 
attractor in terms of the Reynolds number. He employs, instead of Re, the Reynolds number 
given by 

iZ!=$, 

which is justified by the fact that the mean velocity U is asymptotically bounded by PL/u. The 
result in [15] then states that the dimension of the global attractor can be estimated from above 

and below by the square root of E. 
Here, we examine the existence of inertial manifolds for the system (1) with a view to clarifying 

the relation between the Reynolds number Re. To see the dependence of E explicitly, we first 
make the change of variables: 

( LU Lv x ut 
(u,%x,t) + T’ -, -, - 

ULL > 
, 

to obtain 

du =z--u_ 
dt s 

iu2dx 
0 

au a2v au 
in (2, t) E [O,l] x IR+, 

7$=Uv+3--2vg 

(2) 

with ~(0, t) = ~(1, t) = 0 for t > 0. Here, we have used the same letters U, v, x, t for simplicity. 

As is well known, however, the presence of the gradient term in the nonlinearity makes the 
situation worse. Indeed, if we apply directly the well-established procedure developed in [4], we 
obtain the existence of inertial manifolds for any sufficiently small &. But this leads a trivial - 
results; when Re < rP2, we easily infer (U, v) + (G, 0) as t + co. 

Recently M. Kwak [5] has found a method to circumvent this difficulty. He regards the de- 
rivative and the nonlinear term as independent variables to embed the original equation into a 
reaction-diffusion system exhibiting the same long time dynamics. Following his idea, we set 

av z = - w := w2 and let u := J(U) = (U, 0x’ ZJ, z, w), for u = (U, w). It is easy to see that u satisfies 

EL-u- l - 
dt s 

v2 dx + Re, 
0 

dw 2 22 + 2uv2 - 222 - 4v%, 
dt = ax2 

(3) 

with the boundary condition for (z, w) being 

g(O,t) = g(l,t) = 0. 
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Note that the system (3) is no longer dissipative. Under further modification to make (3) dissi- 
pative (see (5) below), we can show the existence of inertial manifolds. Although this modified 
system reflects the long time behaviour for (3) merely partially, its global attractor agrees with 
the embedded one for (l), and so we content ourselves to prove the existence of inertial manifolds 
for the modified system. In summary, we state 

- 
THEOREM. For any Re > 0, there is an inertial manifold M for the Burgers’ system. The 
dimension N of M is estimated by 

N < C1E2exp (exp (exp (C2&2))), as&~ co, 

for some positive real constants Cl, C2. 

Note that the principal part of (3) is no longer self-adjoint. However, it is sectorial and has a 
compact resolvent; we can appeal to the observation in [12]. Moreover, this time the nonlinearity 
is without the gradient term, and hence, the required condition for the existence is less stringent - 
than before. Our task is then to compute various constants rather explicitly in terms of Re. 
Unfortunately, the dimension of M is quite bigger than that of the global attractor, which is the 
point where the improvement must be needed. 

SECTION 2 

We give the outline of the proof of the theorem. First, we recall some a ptioti estimates. For 
any ZLO = (VO, ~0) E Iw x L2(0, l), there exists to = t(0) > 0, such that 

u(t)2 + I& I 2z2, Ivz(t)I;? < P?, Iwzz(t)l;z I P; (4) 

holds for all t 2 to. Here, u(t) = (U(t), v(t)) denotes the solution of (2) with the initial value ug, 
and we have put 

p: := &Reexp (15E2), 

pi:= (5Re2+9~4+10p~+p~)exp{80(2E2+10p;’+p~)}. 

These estimates follow from the standard argument treated extensively in [13]. See also [15]. 
In view of (4), we modify the system (3) as follows: 

I 

1 - 
u,=-u- w2 dx + +,Re, 

0 

ut = v,, + uv - w, - 2v (w - V2) - (1 - 4,) (2Re + 4V2) w, 

Zt = z,, + so.2 - 602 + uz - w,, - 2a (w - ?J”) - CX (z - V,) (5) 
- (1 - 4,) (2Re + 127J2) z, 

Wt = w,, + 6rJw - 6ow + 2uv2 - 2z2 - 4w2z - (4op2 + lO?J2) (w - w”) 
- 

- (1 - 4,) (2Re + 4w2) 2w2, 

where 60 > 0 and 

P2 = 2z2 (1 + 2~;) + 2pl + 1964, 

cr=24p2+2E+1. 

4P is the cut-off function defined by 
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where 4 : [0, 00) -+ [0, l] is a given smooth nonincreasing function such that 

4(s) 1, for 0 < 51, s = { 

0, for s 12, 

I&(s)1 I 2, for 0 I s < co. 

The system (5) can be rewritten in the following abstract form: 

du 
- = -%l+$(u), 
dt 

where u = (U, v, z, w) and 

/l 0 0 0 \ 

I 0 -g 0 
d -- 

dX I 
2i := 

i 

0 -kg -&+s, -g ’ 

0 0 0 -g+s, I 
S(u) := (Fl, F2, F3, F4) 7 

(6) 

where 

I 
1 

Fl := - v2dx + I$,=, 

- 
F2 := l_Jvo 2v (w - v2) - (1 - 4,) (2Re + 4v2) v, 

- 
F3 := Sez - kz + Uz - 2z (w - v2) - (Y (z - w,) - (1 - 4,) (2Re + 12~~) z, 

- 
F4 := Sew + 2Uv2 - 2z2 - 4v2z - (40~~ + 10~~) (w - w2) - (1 - 4,) (2Re + 4v2) 2v2. 

The domain of %, D (U), is defined by 

D (Iu) := I[$ x (E&o, 1) n P(O,l)) x {y E P(O,l); y,(O) = y,(l) = o}2. 

We notice that the operator U is not self-adjoint but it is sectorial, i.e., -U generates an analytic 

semigroup on 4 := I[$ x L2(0, 1)3. (See the corresponding argument of [5, Lemma 2.61.) We can, 

therefore, define the fractional powers of 8. Moreover, we easily see that the nonlinear term, 3: 

D (U1i2) -+ fi is locally Lipschitz continuous. Hence, if u(0) = us E D (U’/‘), then there exists 

a unique (strong) solution u E C ([0, T); D (U’i2)) of (5). 

The next lemma shows the relation between the global attractor A,, for (2) and the one drd 

for (5). Its meaning is that the long time dynamics for (5) partly reflects the one for (2). See 

also [5, Theorem 3.51. 

LEMMA. The system (5) admits the global attractor drd, which agrees with the embedding of 

the global attractor A, for (21, i.e., 

J (do,) = drd. 

Moreover, the injection J gives a Aow homeomorphism between them. 

The crucial step for the proof of the lemma is to compute the time derivative of 

(7) 
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so that one sees (7) tending to 0 as t + 00. The rest of the proof then consists of standard 

a priori estimates. 

Finally, we examine the existence of inertial manifolds for the modified system (5). Let .13N 

be the linear subspace of IK x L2(0, 1)3 p s anned by the first N eigenfunctions of 2I and let &N 

be the orthogonal complement. It is easy to see that BN and QN are invariant under !2I and 
dim 8311 = 3(N + 1). The latter can be seen from the fact that BN has a canonical basis 

where 

& = sin 7rn5, $n = cos nnx, 

for n = 1,2,3,. . , $0 = 1, taking into account (6). Now, we can apply Theorem 3.4 in [12] with 

/3 = 1, and we obtain an inertial manifold M ,.d for (5) as a graph of a Lipschitz continuous 

mapping from BN into QN fl D (a1i2). Although the required a priori estimate is stronger than 

that needed in the previous lemma, the verification may be safely omitted. The constant Cz 

in (3.12) in [la] is related to the nonlinearity S(U) of the modified system (5); it involves the 

third derivative of u, from which exp3 comes. This completes the proof of the theorem. 
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