459 research outputs found

    Slow-roll Inflation with the Gauss-Bonnet and Chern-Simons Corrections

    Full text link
    We study slow-roll inflation with the Gauss-Bonnet and Chern-Simons corrections. We obtain general formulas for the observables: spectral indices, tensor-to-scalar ratio and circular polarization of gravitational waves. The Gauss-Bonnet term violates the consistency relation r = -8n_T. Particularly, blue spectrum n_T > 0 and scale invariant spectrum |8n_T|/r << 1 of tensor modes are possible. These cases require the Gauss-Bonnet coupling function of \xi _{,\phi } \sim 10^8/M_{Pl}. We use examples to show new-inflation-type potential with 10M_{Pl} symmetry breaking scale and potential with flat region in \phi \gtrsim 10M_{Pl} lead to observationally consistent blue and scale invariant spectra, respectively. Hence, these interesting cases can actually be realized. The Chern-Simons term produce circularly polarized tensor modes. We show an observation of these signals supports existence of the Chern-Simons coupling function of \omega _{,\phi } \sim 10^8/M_{Pl}. Thus, with future observations, we can fix or constrain the value of these coupling functions, at the CMB scale.Comment: 21 pages, 5 figure

    Exact solutions in a scalar-tensor model of dark energy

    Full text link
    We consider a model of scalar field with non minimal kinetic and Gauss Bonnet couplings as a source of dark energy. Based on asymptotic limits of the generalized Friedmann equation, we impose restrictions on the kinetic an Gauss-Bonnet couplings. This restrictions considerable simplify the equations, allowing for exact solutions unifying early time matter dominance with transitions to late time quintessence and phantom phases. The stability of the solutions in absence of matter has been studied.Comment: 30 pages, 2 figures, to appear in JCA

    Inhomogeneities in dusty universe - a possible alternative to dark energy?

    Full text link
    There have been of late renewed debates on the role of inhomogeneities to explain the observed late acceleration of the universe. We have looked into the problem analytically with the help of the well known spherically symmetric but inhomogeneous Lemaitre-Tolman-Bondi(LTB) model generalised to higher dimensions. It is observed that in contrast to the claim made by Kolb et al the presence of inhomogeneities as well as extra dimensions can not reverse the signature of the deceleration parameter if the matter field obeys the energy conditions. The well known Raychaudhuri equation also points to the same result. Without solving the field equations explicitly it can, however, be shown that although the total deceleration is positive everywhere nevertheless it does not exclude the possibility of having radial acceleration, even in the pure dust universe, if the angular scale factor is decelerating fast enough and vice versa. Moreover it is found that introduction of extra dimensions can not reverse the scenario. To the contrary it actually helps the decelerating process.Comment: 14 pages, 4 figure

    Competition between Fusion and Quasi-fission in the Formation of Super-heavy Elements

    Get PDF
    Quasifission is a non-equilibrium dynamical process resulting in rapid separation of the dinuclear system initially formed after capture and sticking of two colliding heavy nuclei. This can inhibit fusion by many orders of magnitude, thus suppressing the cross section for formation of superheavy elements. Measurements with projectiles from C to Ni, made at the Australian National University Heavy Ion Accelerator Facility, have mapped out quasifission characteristics and systematics using mass-angle distributions (MAD) - the fission mass-split as a function of centre-of-mass angle. These provide information on quasifission dynamics in the least model-dependent way. Quasifission time-scale information in the MAD has been compared with TDHF calculations of the collisions, with good agreement being found. Most significantly, the nuclear structure of the two colliding nuclei has a dramatic effect on quasifission probabilities and characteristics in gentle collisions at near-barrier energies. The effect of static deformation alignment, closed shells and N/Z matching can completely change reaction outcomes. The realization of this strong dependence makes modelling quasifission and superheavy element formation a challenging task, but should ultimately allow more reliable prediction of superheavy element formation cross sections

    New Agegraphic Dark Energy in f(R)f(R) Gravity

    Full text link
    In this paper we study cosmological application of new agegraphic dark energy density in the f(R)f(R) gravity framework. We employ the new agegraphic model of dark energy to obtain the equation of state for the new agegraphic energy density in spatially flat universe. Our calculation show, taking n<0n<0, it is possible to have wΛw_{\rm \Lambda} crossing -1. This implies that one can generate phantom-like equation of state from a new agegraphic dark energy model in flat universe in the modified gravity cosmology framework. Also we develop a reconstruction scheme for the modified gravity with f(R)f(R) action.Comment: 8 pages, no figur
    • …
    corecore